二重多面体
组合数学
重心坐标系
顶点(图论)
数学
立方体(代数)
替代瓷砖
离散数学
几何学
图形
作者
Charlotte Bonneau,Olaf Delgado‐Friedrichs,M. O’Keeffe,Omar M. Yaghi
出处
期刊:Acta Crystallographica Section A
[International Union of Crystallography]
日期:2004-10-26
卷期号:60 (6): 517-520
被引量:103
标识
DOI:10.1107/s0108767304015442
摘要
The 15 3-periodic minimal nets of Beukemann & Klee [Z. Kristallogr. (1992), 201, 37-51] have been examined. Seven have collisions in barycentric coordinates and are self-entangled. The other eight have natural tilings. Five of these tilings are self-dual and the nets are the labyrinth nets of the P, G, D, H and CLP minimal surfaces of genus 3. Twelve ways have been found for subdividing a cube into smaller tiles without introducing new vertices. Duals of such tilings with one vertex in the primitive cell have nets that are one of the minimal nets. Minimal nets without collisions are uniform.
科研通智能强力驱动
Strongly Powered by AbleSci AI