A theoretical justification for the application of the Arrhenius equation to kinetics of solid state reactions (mainly ionic crystals)

阿累尼乌斯方程 离子键合 热力学 活化能 化学 主方程 速率方程 化学物理 物理化学 统计物理学 物理 动力学 量子力学 量子 离子 有机化学
作者
Andrew K. Galwey,Michael E. Brown
出处
期刊:Proceedings [The Royal Society]
卷期号:450 (1940): 501-512 被引量:89
标识
DOI:10.1098/rspa.1995.0097
摘要

Although the Arrhenius equation has been widely and successfully applied to innumerable solid state reactions, this use lacks a theoretical justification because the energy distribution amongst the immobilized constituents of a crystalline reactant is not represented by the Maxwell-Boltzmann equation. The present analysis focuses attention on the role of the reactant-product interface, the active zone within which chemical changes preferentially proceed in many solid state rate processes. We identify interface energy levels, that are the precursors to the bond redistribution step, as extensions to the band structure of the solid into the structurally less-regular reaction zone. These interface energy levels are analogous to impurity levels. Electron reorganization requires a locally high energy so that interface levels are appreciably above the Fermi level of the crystalline reactant (and product). Occupancy is determined by energy distribution functions based on Fermi-Dirac statistics for electrons and Bose-Einstein statistics for phonons. For the highest energies, necessary for reaction, both distributions approximate to the exponential energy term, thereby providing a theoretical justification for the application of the Arrhenius equation to reactions of solids. The treatment given here has been largely developed from the theory applicable to ionic solids and the conclusions are most directly relevant to reactions of this class of substance. It is intended, however, that the approach should be of value in extending theoretical understanding of all rate processes involving solids which require the preinvestment of energy in an electron reorganization step.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常梦菡发布了新的文献求助10
刚刚
量子星尘发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
文静的电灯胆完成签到,获得积分10
1秒前
打打应助心芷采纳,获得10
2秒前
2秒前
3秒前
3秒前
标致踏歌发布了新的文献求助10
3秒前
3秒前
5秒前
扁桃体完成签到,获得积分10
6秒前
7秒前
打打应助sssxylyy采纳,获得100
7秒前
还好还好发布了新的文献求助10
7秒前
8秒前
忧郁难胜完成签到,获得积分10
8秒前
喜悦白玉发布了新的文献求助10
8秒前
9秒前
万能图书馆应助学习猴采纳,获得10
9秒前
Owen应助xixia采纳,获得10
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
解愚志应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
Jasper应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
10秒前
Ava应助科研通管家采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5769758
求助须知:如何正确求助?哪些是违规求助? 5581454
关于积分的说明 15422558
捐赠科研通 4903392
什么是DOI,文献DOI怎么找? 2638203
邀请新用户注册赠送积分活动 1586098
关于科研通互助平台的介绍 1541186