Assessment of methods for extreme value analysis of non-Gaussian wind effects with short-term time history samples

极值理论 高斯分布 广义极值分布 高斯过程 数学 高斯函数 统计 计算机科学 物理 量子力学
作者
Jie Ding,Xinzhong Chen
出处
期刊:Engineering Structures [Elsevier]
卷期号:80: 75-88 被引量:89
标识
DOI:10.1016/j.engstruct.2014.08.041
摘要

This study presents a comprehensive assessment of various methods for extreme value analysis of non-Gaussian wind effects using short-term time history samples. The methods examined are peaks-over-threshold (POT) method, the average conditional exceedance rate (ACER) method, and the translation process method with various translation models. The long-term wind pressure coefficient data on a saddle-shaped large-span roof collected from wind tunnel test are used as the basis for comparison. These pressure coefficient data are featured by a variety of non-Gaussian characteristics, including mildly and strongly softening and hardening non-Gaussian processes with unique distributions. Some new developments of the methods are also presented to better predict the extreme value distribution taking into account the non-Gaussian characteristics. The declustering of process to extract independent peaks over a given threshold for POT method is discussed. The effectiveness of the ACER method is firstly examined as applied to non-Gaussian wind pressures. Regarding the translation process method, this study highlights the limitations of widely used moment-based method and the method based on three-parameter gamma distribution of the process. A mixture distribution model is introduced for better modeling the distribution tail and estimation of extreme value distribution. This mixture distribution method and the method based on curve-fitting of translation function derived from mapping of cumulative distribution functions are illustrated to be capable of capturing the upper tail of translation function, thus lead to satisfactory estimations of extreme statistics for a variety of non-Gaussian processes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助远方采纳,获得10
1秒前
烟花应助liuq采纳,获得10
1秒前
lixl0725完成签到 ,获得积分10
2秒前
专注秋尽发布了新的文献求助10
2秒前
科研小民工应助研友_LMg7PZ采纳,获得30
3秒前
宸哥完成签到,获得积分10
3秒前
眯眯眼的衬衫应助yanyan采纳,获得10
5秒前
Yue完成签到 ,获得积分10
5秒前
无限的含羞草完成签到,获得积分10
6秒前
大个应助WZ0904采纳,获得10
7秒前
Sofia发布了新的文献求助60
10秒前
11秒前
橘子姐姐发布了新的文献求助10
12秒前
yanyan完成签到,获得积分10
13秒前
TT完成签到,获得积分10
14秒前
14秒前
了然完成签到 ,获得积分10
15秒前
jxp完成签到,获得积分10
15秒前
jojo完成签到 ,获得积分10
16秒前
16秒前
勤劳落雁完成签到 ,获得积分10
16秒前
19秒前
爆米花应助科研通管家采纳,获得30
19秒前
顾矜应助科研通管家采纳,获得10
19秒前
19秒前
20秒前
田様应助科研通管家采纳,获得10
20秒前
科目三应助科研通管家采纳,获得10
20秒前
李爱国应助科研通管家采纳,获得10
20秒前
打打应助科研通管家采纳,获得10
20秒前
RC_Wang应助科研通管家采纳,获得10
20秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
20秒前
星辰大海应助科研通管家采纳,获得10
20秒前
CipherSage应助科研通管家采纳,获得10
20秒前
赘婿应助Quzhengkai采纳,获得10
20秒前
sutharsons应助科研通管家采纳,获得30
20秒前
李爱国应助科研通管家采纳,获得30
21秒前
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808