Data stream forecasting for system fault prediction

支持向量机 数据挖掘 计算机科学 数据流 故障检测与隔离 数据流挖掘 断层(地质) 人工智能 电信 地质学 地震学 执行机构
作者
Ahmad Alzghoul,Magnus Löfstrand,Björn Backe
出处
期刊:Computers & Industrial Engineering [Elsevier BV]
卷期号:62 (4): 972-978 被引量:35
标识
DOI:10.1016/j.cie.2011.12.023
摘要

Competition among today's industrial companies is very high. Therefore, system availability plays an important role and is a critical point for most companies. Detecting failures at an early stage or foreseeing them before they occur is crucial for machinery availability. Data analysis is the most common method for machine health condition monitoring. In this paper we propose a fault-detection system based on data stream prediction, data stream mining, and data stream management system (DSMS). Companies that are able to predict and avoid the occurrence of failures have an advantage over their competitors. The literature has shown that data prediction can also reduce the consumption of communication resources in distributed data stream processing. In this paper different data-stream-based linear regression prediction methods have been tested and compared within a newly developed fault detection system. Based on the fault detection system, three DSM algorithms outputs are compared to each other and to real data. The three applied and evaluated data stream mining algorithms were: Grid-based classifier, polygon-based method, and one-class support vector machines (OCSVM). The results showed that the linear regression method generally achieved good performance in predicting short-term data. (The best achieved performance was with a Mean Absolute Error (MAE) around 0.4, representing prediction accuracy of 87.5%). Not surprisingly, results showed that the classification accuracy was reduced when using the predicted data. However, the fault-detection system was able to attain an acceptable performance of around 89% classification accuracy when using predicted data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
肖肖发布了新的文献求助10
刚刚
1秒前
1秒前
卡萨卡萨完成签到,获得积分10
5秒前
青松果完成签到,获得积分10
7秒前
yousen完成签到,获得积分20
7秒前
Sid应助Sunwenrui采纳,获得60
7秒前
赘婿应助lw777采纳,获得10
9秒前
10秒前
小蘑菇应助张大英采纳,获得10
10秒前
华仔应助2889580752采纳,获得10
12秒前
嘻嘻完成签到,获得积分10
12秒前
13秒前
丘比特应助科研通管家采纳,获得10
13秒前
领导范儿应助科研通管家采纳,获得10
13秒前
慕青应助科研通管家采纳,获得10
13秒前
13秒前
斯文败类应助科研通管家采纳,获得10
13秒前
13秒前
思源应助科研通管家采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
13秒前
Volcano完成签到,获得积分10
13秒前
无花果应助俏皮的白柏采纳,获得10
14秒前
单薄的夜南应助宁学者采纳,获得10
14秒前
15秒前
15秒前
15秒前
16秒前
空禅yew发布了新的文献求助10
16秒前
华仔应助云辞忧采纳,获得10
18秒前
18秒前
Sunwenrui完成签到,获得积分10
18秒前
12完成签到,获得积分10
20秒前
whoami发布了新的文献求助10
21秒前
21秒前
搜集达人应助TTT0530采纳,获得10
22秒前
张大英发布了新的文献求助10
23秒前
23秒前
24秒前
tassssadar完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988868
求助须知:如何正确求助?哪些是违规求助? 3531255
关于积分的说明 11253071
捐赠科研通 3269858
什么是DOI,文献DOI怎么找? 1804822
邀请新用户注册赠送积分活动 881994
科研通“疑难数据库(出版商)”最低求助积分说明 809035