Data stream forecasting for system fault prediction

支持向量机 数据挖掘 计算机科学 数据流 故障检测与隔离 数据流挖掘 断层(地质) 人工智能 电信 地质学 地震学 执行机构
作者
Ahmad Alzghoul,Magnus Löfstrand,Björn Backe
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:62 (4): 972-978 被引量:35
标识
DOI:10.1016/j.cie.2011.12.023
摘要

Competition among today's industrial companies is very high. Therefore, system availability plays an important role and is a critical point for most companies. Detecting failures at an early stage or foreseeing them before they occur is crucial for machinery availability. Data analysis is the most common method for machine health condition monitoring. In this paper we propose a fault-detection system based on data stream prediction, data stream mining, and data stream management system (DSMS). Companies that are able to predict and avoid the occurrence of failures have an advantage over their competitors. The literature has shown that data prediction can also reduce the consumption of communication resources in distributed data stream processing. In this paper different data-stream-based linear regression prediction methods have been tested and compared within a newly developed fault detection system. Based on the fault detection system, three DSM algorithms outputs are compared to each other and to real data. The three applied and evaluated data stream mining algorithms were: Grid-based classifier, polygon-based method, and one-class support vector machines (OCSVM). The results showed that the linear regression method generally achieved good performance in predicting short-term data. (The best achieved performance was with a Mean Absolute Error (MAE) around 0.4, representing prediction accuracy of 87.5%). Not surprisingly, results showed that the classification accuracy was reduced when using the predicted data. However, the fault-detection system was able to attain an acceptable performance of around 89% classification accuracy when using predicted data.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
BowieHuang应助keyanxiaobaishu采纳,获得10
3秒前
Jenny发布了新的文献求助10
4秒前
fzh发布了新的文献求助10
7秒前
7秒前
8秒前
11秒前
KYTYYDS发布了新的文献求助10
12秒前
HanluMa完成签到 ,获得积分10
12秒前
fzh完成签到,获得积分10
16秒前
Jenny完成签到,获得积分10
18秒前
伟立完成签到,获得积分10
18秒前
25秒前
26秒前
然12138完成签到 ,获得积分10
26秒前
香蕉觅云应助SnownS采纳,获得10
26秒前
川荣李奈完成签到 ,获得积分10
30秒前
xinbowey发布了新的文献求助10
30秒前
火星上向珊完成签到,获得积分10
33秒前
35秒前
柳条儿完成签到,获得积分10
35秒前
如意幻枫完成签到,获得积分10
39秒前
40秒前
40秒前
渔婆发布了新的文献求助10
41秒前
43秒前
风趣的泥猴桃完成签到 ,获得积分10
44秒前
44秒前
zgsjymysmyy发布了新的文献求助30
45秒前
fuchao完成签到,获得积分10
45秒前
牧谷发布了新的文献求助10
46秒前
好吃的火龙果完成签到 ,获得积分10
47秒前
天边发布了新的文献求助10
48秒前
东方越彬发布了新的文献求助10
49秒前
赘婿应助sunny采纳,获得10
49秒前
49秒前
49秒前
SnownS完成签到,获得积分10
50秒前
123123发布了新的文献求助10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5557785
求助须知:如何正确求助?哪些是违规求助? 4642836
关于积分的说明 14669258
捐赠科研通 4584253
什么是DOI,文献DOI怎么找? 2514716
邀请新用户注册赠送积分活动 1488897
关于科研通互助平台的介绍 1459566