Data stream forecasting for system fault prediction

支持向量机 数据挖掘 计算机科学 数据流 故障检测与隔离 数据流挖掘 断层(地质) 人工智能 地震学 地质学 电信 执行机构
作者
Ahmad Alzghoul,Magnus Löfstrand,Björn Backe
出处
期刊:Computers & Industrial Engineering [Elsevier]
卷期号:62 (4): 972-978 被引量:35
标识
DOI:10.1016/j.cie.2011.12.023
摘要

Competition among today's industrial companies is very high. Therefore, system availability plays an important role and is a critical point for most companies. Detecting failures at an early stage or foreseeing them before they occur is crucial for machinery availability. Data analysis is the most common method for machine health condition monitoring. In this paper we propose a fault-detection system based on data stream prediction, data stream mining, and data stream management system (DSMS). Companies that are able to predict and avoid the occurrence of failures have an advantage over their competitors. The literature has shown that data prediction can also reduce the consumption of communication resources in distributed data stream processing. In this paper different data-stream-based linear regression prediction methods have been tested and compared within a newly developed fault detection system. Based on the fault detection system, three DSM algorithms outputs are compared to each other and to real data. The three applied and evaluated data stream mining algorithms were: Grid-based classifier, polygon-based method, and one-class support vector machines (OCSVM). The results showed that the linear regression method generally achieved good performance in predicting short-term data. (The best achieved performance was with a Mean Absolute Error (MAE) around 0.4, representing prediction accuracy of 87.5%). Not surprisingly, results showed that the classification accuracy was reduced when using the predicted data. However, the fault-detection system was able to attain an acceptable performance of around 89% classification accuracy when using predicted data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
HLB发布了新的文献求助10
1秒前
Lyq完成签到 ,获得积分10
2秒前
Cryo完成签到,获得积分10
2秒前
劝儿完成签到,获得积分10
3秒前
3秒前
tramp发布了新的文献求助10
3秒前
馒头完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
大胆的易槐完成签到,获得积分10
5秒前
费老三发布了新的文献求助10
6秒前
Li F发布了新的文献求助10
6秒前
6秒前
Ava应助劝儿采纳,获得10
6秒前
7秒前
7秒前
8秒前
隐形曼青应助阳光秋莲采纳,获得10
9秒前
共享精神应助syz采纳,获得30
9秒前
玖玖完成签到,获得积分10
9秒前
10秒前
可爱的函函应助清爽灰狼采纳,获得10
10秒前
10秒前
HLB完成签到,获得积分10
10秒前
orixero应助旺仔采纳,获得10
11秒前
11秒前
机灵亦旋完成签到,获得积分10
12秒前
12秒前
卷白菜发布了新的文献求助10
12秒前
果壳茉莉拌沙拉完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
无花果应助Li F采纳,获得10
13秒前
13秒前
Valrhona发布了新的文献求助10
14秒前
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3152625
求助须知:如何正确求助?哪些是违规求助? 2803842
关于积分的说明 7855937
捐赠科研通 2461519
什么是DOI,文献DOI怎么找? 1310346
科研通“疑难数据库(出版商)”最低求助积分说明 629199
版权声明 601782