双极扩散
材料科学
光电子学
噪声裕度
半导体
晶体管
电子迁移率
场效应晶体管
载流子
有机场效应晶体管
有机半导体
电极
电子线路
纳米技术
电子
电气工程
电压
化学
物理
物理化学
量子力学
工程类
作者
Kang‐Jun Baeg,Juhwan Kim,Dongyoon Khim,Mario Caironi,Dong‐Yu Kim,In–Kyu You,Jordan R. Quinn,Antonio Facchetti,Yong‐Young Noh
摘要
Ambipolar π-conjugated polymers may provide inexpensive large-area manufacturing of complementary integrated circuits (CICs) without requiring micro-patterning of the individual p- and n-channel semiconductors. However, current-generation ambipolar semiconductor-based CICs suffer from higher static power consumption, low operation frequencies, and degraded noise margins compared to complementary logics based on unipolar p- and n-channel organic field-effect transistors (OFETs). Here, we demonstrate a simple methodology to control charge injection and transport in ambipolar OFETs via engineering of the electrical contacts. Solution-processed caesium (Cs) salts, as electron-injection and hole-blocking layers at the interface between semiconductors and charge injection electrodes, significantly decrease the gold (Au) work function (∼4.1 eV) compared to that of a pristine Au electrode (∼4.7 eV). By controlling the electrode surface chemistry, excellent p-channel (hole mobility ∼0.1-0.6 cm(2)/(Vs)) and n-channel (electron mobility ∼0.1-0.3 cm(2)/(Vs)) OFET characteristics with the same semiconductor are demonstrated. Most importantly, in these OFETs the counterpart charge carrier currents are highly suppressed for depletion mode operation (I(off) < 70 nA when I(on) > 0.1-0.2 mA). Thus, high-performance, truly complementary inverters (high gain >50 and high noise margin >75% of ideal value) and ring oscillators (oscillation frequency ∼12 kHz) based on a solution-processed ambipolar polymer are demonstrated.
科研通智能强力驱动
Strongly Powered by AbleSci AI