化学
奎宁酸
碎片(计算)
绿原酸
残留物(化学)
部分
脱羧
立体化学
构象异构
色谱法
有机化学
分子
计算机科学
操作系统
催化作用
作者
Michael N. Clifford,Susan Knight,Nikolai Kuhnert
摘要
The fragmentation behavior of all six dicaffeoylquinic acids (diCQA) has been investigated using LC-MS(4). It is possible to discriminate between each of the isomers including those for which commercial standards are not available. For diCQA, the ease of removal of the caffeoyl residue during fragmentation is 1 approximately = 5 > 3 > 4. The distinctive fragmentation observed for the little-studied 1,4-dicaffeoylquinic acid involves elimination of the C1 caffeoyl residue, repeated dehydrations leading to the aromatization of the quinic acid moiety, and its decarboxylation. It is suggested that this process is initiated by the C1 carboxyl protonating the C5 hydroxyl in the inverted chair conformer, followed by its protonating the C1 caffeoyl residue in the favored chair conformation. The fragmentation of 1-caffeoylquinic acid is indistinguishable from that of the commercially available 5-caffeoylquinic acid, but these two isomers can be distinguished easily by their facile chromatographic resolution on reversed phase packings. The hierarchical key previously developed for characterizing chlorogenic acids has been extended to accommodate 1-caffeoylquinic acid and the 1-acyl dicaffeoylquinic acids.
科研通智能强力驱动
Strongly Powered by AbleSci AI