Journal of Geophysical Research (1896-1977)Volume 77, Issue 11 p. 2104-2114 Static fatigue of quartz Christopher H. Scholz, Christopher H. ScholzSearch for more papers by this author Christopher H. Scholz, Christopher H. ScholzSearch for more papers by this author First published: 10 April 1972 https://doi.org/10.1029/JB077i011p02104Citations: 191AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Abstract Nearly 200 samples of single-crystal quartz were broken in uniaxial compression. The quartz was observed to exhibit strong static fatigue, the mean fracture time 〈t〉 being related to stress σ, concentration of water CH,O, and temperature T by 〈t〉 = t0 CH2O−;α exp [(u′/RT) − κ′σ]. Microfracturing associated with crack growth and spalling occurred continuously during the experiments. No creep strains could be detected. The rate of microfracturing n followed the expression n = a0 CH2O α exp [(−u′/RT) + κ′σ]tγ. These and other results suggest that static fatigue of quartz is due to stress corrosion cracking. The most likely mechanism is a silica hydration reaction. Static fatigue is suggested as the mechanism of brittle creep of rocks and of time-dependent earthquake phenomena. Citing Literature Volume77, Issue1110 April 1972Pages 2104-2114 RelatedInformation