Analysis of RNA-Seq Data Using TEtranscripts

基因组 人类基因组 计算生物学 转座因子 参考基因组 生物 遗传学 基因 流动遗传元素 DNA测序 RNA序列 基因组学 转录组 基因表达
作者
Ying Jin,Molly Gale Hammell
出处
期刊:Methods in molecular biology 卷期号:: 153-167 被引量:40
标识
DOI:10.1007/978-1-4939-7710-9_11
摘要

Transposable elements (TE) are mobile genetic elements that can readily change their genomic position. When not properly silenced, TEs can contribute a substantial portion to the cell’s transcriptome, but are typically ignored in most RNA-seq data analyses. One reason for leaving TE-derived reads out of RNA-seq analyses is the complexities involved in properly aligning short sequencing reads to these highly repetitive regions. Here we describe a method for including TE-derived reads in RNA-seq differential expression analysis using an open source software package called TEtranscripts. TEtranscripts is designed to assign both uniquely and ambiguously mapped reads to all possible gene and TE-derived transcripts in order to statistically infer the correct gene/TE abundances. Here, we provide a detailed tutorial of TEtranscripts using a published qPCR validated dataset. Barbara McClintock laid the foundation for TE research with her discoveries in maize of mobile genetic elements capable of inserting into novel locations in the genome, altering the expression of nearby genes [1]. Since then, our appreciation of the contribution of repetitive TE-derived sequences to eukaryotic genomes has vastly increased. With the publication of the first human genome draft by the Human Genome Project, it was determined that nearly half of the human genome is derived from TE sequences [2, 3], with varying levels of repetitive DNA present in most plant and animal species. More recent studies looking at distantly related TE-like sequences have estimated that up to two thirds of the human genome might be repeat-derived [4], with the vast majority of these sequences attributed to retrotransposons that require transcription as part of the mobilization process, as discussed below.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ll发布了新的文献求助10
刚刚
徐翩跹完成签到,获得积分10
1秒前
不喝可乐发布了新的文献求助10
1秒前
Dream完成签到,获得积分10
1秒前
科研通AI5应助F冯采纳,获得10
1秒前
感谢大哥的帮助完成签到 ,获得积分10
1秒前
qiongqiong完成签到,获得积分10
1秒前
米娅完成签到,获得积分10
2秒前
2秒前
强健的妙菱完成签到,获得积分10
3秒前
3秒前
小蘑菇应助温柔若采纳,获得10
3秒前
李爱国应助通~采纳,获得10
3秒前
经竺应助小马哥采纳,获得10
3秒前
5秒前
单纯的芷蝶完成签到,获得积分10
5秒前
研友完成签到,获得积分10
5秒前
勤奋若风完成签到,获得积分10
5秒前
英姑应助每天都想下班采纳,获得10
6秒前
shooin完成签到,获得积分10
6秒前
佳佳发布了新的文献求助10
6秒前
MADKAI发布了新的文献求助10
6秒前
lin完成签到,获得积分20
7秒前
思源应助科研民工采纳,获得10
7秒前
忧郁凌波完成签到,获得积分10
7秒前
姜姜姜完成签到 ,获得积分10
8秒前
凶狠的绿兰完成签到,获得积分10
9秒前
多多少少忖测的情完成签到,获得积分10
9秒前
科研通AI5应助兴奋的宛白采纳,获得10
10秒前
11秒前
zhanlonglsj发布了新的文献求助10
11秒前
11秒前
芍药完成签到,获得积分10
11秒前
Yogita完成签到,获得积分10
12秒前
DoctorYan完成签到,获得积分10
12秒前
Adler完成签到,获得积分10
12秒前
13秒前
坐宝马吃地瓜完成签到 ,获得积分10
13秒前
SciGPT应助Strike采纳,获得10
13秒前
自强不息完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740