In-process tool condition monitoring in compliant abrasive belt grinding process using support vector machine and genetic algorithm

磨料 机械加工 刀具磨损 研磨 支持向量机 材料科学 过程(计算) 时域 机床 遗传算法 加速度计 声发射 机械工程 计算机科学 人工智能 工程类 冶金 机器学习 复合材料 计算机视觉 操作系统
作者
Vigneashwara Pandiyan,Wahyu Caesarendra,Tegoeh Tjahjowidodo,Hock Hao Tan
出处
期刊:Journal of Manufacturing Processes [Elsevier]
卷期号:31: 199-213 被引量:154
标识
DOI:10.1016/j.jmapro.2017.11.014
摘要

Industrial interest in tool condition monitoring for compliant coated abrasives has significantly augmented in recent years as unlike other abrasive machining processes the grains are not regenerated. Tool life is a significant criterion in coated abrasive machining since deterioration of abrasive grains increases the surface irregularity and adversely affects the finishing quality. Predicting tool life in real time for coated abrasives not only helps to optimise the utilisation of the tool’s life cycle but also secures the surface quality of finished components. This paper describes the evolution of the abrasive grain degradation in the belt tool with process time and also the development of Support Vector Machine (SVM) and Genetic Algorithm (GA) based predictive classification model for in-process sensing of abrasive belt wear for robotized abrasive belt grinding process. With this tool condition monitoring predicting system, the effectiveness of the belt and the surface integrity of the material is secure. The analysis of sensor signals generated by the accelerometer, Acoustic Emission (AE) sensor and force sensor during machining is proposed as a technique for detecting belt tool life states. Various time and frequency domain features are extracted from sensor signals obtained from the accelerometer, acoustic sensor and force sensor mounted on the belt grinding setup. The time and frequency domain features extracted from the signals are simultaneously optimised to obtain a subset with fewer input features using a GA. The classification accuracy of the k-Nearest Neighbour (kNN) technique is used as the fitness function for the GA. The subset features extracted from the signals are used to train the SVM in MATLAB. An experimental investigation using four different conditions of tool states is introduced to the SVM and GA for the prediction and classification. By the experimental results, this research proves that the proposed SVM based in-process tool condition monitoring model has a high accuracy rate for predicting abrasive belt condition states.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Mia完成签到 ,获得积分10
6秒前
6秒前
Ava应助科研通管家采纳,获得10
7秒前
ruter完成签到,获得积分0
7秒前
10秒前
jinshijie完成签到 ,获得积分10
11秒前
drtianyunhong完成签到,获得积分10
11秒前
xiaofeng5838完成签到,获得积分10
12秒前
张楠完成签到 ,获得积分10
12秒前
sagapo完成签到 ,获得积分10
16秒前
脑洞疼应助开朗小鸽子采纳,获得10
19秒前
桐桐应助wxxsx采纳,获得10
22秒前
王旭东完成签到 ,获得积分10
23秒前
满城烟沙完成签到 ,获得积分10
25秒前
shrimp5215完成签到,获得积分10
27秒前
Albert完成签到,获得积分10
32秒前
allia完成签到 ,获得积分10
34秒前
kehe!完成签到 ,获得积分0
40秒前
44秒前
45秒前
科研通AI2S应助zyj采纳,获得10
48秒前
老北京发布了新的文献求助10
48秒前
乔心发布了新的文献求助10
50秒前
小琦无敌完成签到,获得积分10
50秒前
肖肖肖完成签到 ,获得积分10
54秒前
nuonuomimi完成签到,获得积分10
1分钟前
听话的靖柏完成签到 ,获得积分10
1分钟前
在水一方应助乔心采纳,获得10
1分钟前
她的城完成签到,获得积分0
1分钟前
iNk应助福娃采纳,获得10
1分钟前
周晴完成签到 ,获得积分10
1分钟前
Vicky完成签到 ,获得积分10
1分钟前
明理问柳完成签到,获得积分10
1分钟前
瞬间de回眸完成签到 ,获得积分0
1分钟前
开心成威完成签到 ,获得积分10
1分钟前
福娃完成签到,获得积分10
1分钟前
AJ完成签到 ,获得积分10
1分钟前
追寻的冬寒完成签到 ,获得积分10
1分钟前
暮霭沉沉应助刘霞采纳,获得10
1分钟前
Ring完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158663
求助须知:如何正确求助?哪些是违规求助? 2809835
关于积分的说明 7883814
捐赠科研通 2468539
什么是DOI,文献DOI怎么找? 1314355
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 601995