作者
Caixia Guo,Ji Wang,Jing Li,Ru Ma,Xiaoying Liu,Lifang Gao,Lige Cao,Junchao Duan,Xianqing Zhou,Yanbo Li,Zhiwei Sun
摘要
As silica nanoparticles (SiNPs) pervade the global economy, however, the followed emissions during the manufacturing, use, and disposal stages inevitably bring an environmental release, potentially result in harmful impacts. Endothelial dysfunction precedes cardiovascular disease, and is often accompanied by mitochondrial impairment and dysfunction. We had reported endothelial dysfunction induced by SiNPs, however, the related mechanisms by which SiNPs interact with mitochondria are not well understood. In the present study, we examined SiNPs-induced mitochondrial dysfunction, and further demonstrated their adverse effects on mitochondrial dynamics and biogenesis in endothelial cells (HUVECs). Consequently, SiNPs entered mitochondria, caused mitochondrial swelling, cristae disruption and even disappearance. Further analyses revealed SiNPs increased the intracellular level of mitochondrial reactive oxygen species, eventually resulting in the collapse of mitochondrial membrane potential, impairments in ATP synthesis, cellular respiration and the activities of three ATP-dependent enzymes (including Na+/K+-ATPase, Ca2+-ATPase and Ca2+/Mg2+-ATPase), as well as an elevated intracellular calcium level. Furthermore, mitochondria in SiNPs-treated HUVECs displayed a fission phenotype. Accordingly, dysregulation of the key gene expressions (FIS1, DRP1, OPA1, Mfn1 and Mfn2) involved in fission/fusion event further certified the SiNPs-induced perturbation of mitochondrial dynamics. Meanwhile, SiNPs-treated HUVECs displayed declined levels of mitochondrial DNA copy number, PGC-1α, NRF1 and also TFAM, indicating an inhibition of mitochondrial biogenesis triggered by SiNPs via PGC-1α-NRF1-TFAM signaling. Overall, SiNPs triggered endothelial toxicity through mitochondria as target, including the induction of mitochondrial dysfunction, as well as the perturbations of their dynamics and biogenesis.