钙钛矿(结构)
带隙
光伏系统
钙钛矿太阳能电池
材料科学
随机森林
聚类分析
可视化
太阳能电池
工程物理
计算机科学
纳米技术
数据挖掘
人工智能
光电子学
物理
化学
结晶学
生态学
生物
作者
Keisuke Takahashi,Lauren Takahashi,Itsuki Miyazato,Yuzuru Tanaka
出处
期刊:ACS Photonics
[American Chemical Society]
日期:2018-01-07
卷期号:5 (3): 771-775
被引量:82
标识
DOI:10.1021/acsphotonics.7b01479
摘要
Undiscovered perovskite materials for applications in capturing solar lights are explored through the implementation of data science. In particular, 15000 perovskite materials data is analyzed where visualization of the data reveals hidden trends and clustering of data. Random forest classification within machine learning is used in order to predict the band gap of perovskite materials where 18 physical descriptors are revealed to determine the band gap. With trained random forest, 9328 perovskite materials with potential for applications in solar cell materials are predicted. The selected Li and Na based perovskite materials within predicted 9328 perovskite materials are evaluated with first principle calculations where 11 undiscovered Li(Na) based perovskite materials fall into the ideal band gap and formation energy ranges for solar cell applications. Thus, the implementation of data science accelerates the discovery of hidden perovskite materials and the approach can be applied to the materials science in general for searching undiscovered materials.
科研通智能强力驱动
Strongly Powered by AbleSci AI