亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A comparison of resampling methods for remote sensing classification and accuracy assessment

遥感 重采样 计算机科学 环境科学 人工智能 地质学
作者
Mitchell Lyons,David A. Keith,Stuart Phinn,Tanya J. Mason,Jane Elith
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:208: 145-153 被引量:220
标识
DOI:10.1016/j.rse.2018.02.026
摘要

Maps that categorise the landscape into discrete units are a cornerstone of many scientific, management and conservation activities. The accuracy of these maps is often the primary piece of information used to make decisions about the mapping process or judge the quality of the final map. Variance is critical information when considering map accuracy, yet commonly reported accuracy metrics often do not provide that information. Various resampling frameworks have been proposed and shown to reconcile this issue, but have had limited uptake. In this paper, we compare the traditional approach of a single split of data into a training set (for classification) and test set (for accuracy assessment), to a resampling framework where the classification and accuracy assessment are repeated many times. Using a relatively simple vegetation mapping example and two common classifiers (maximum likelihood and random forest), we compare variance in mapped area estimates and accuracy assessment metrics (overall accuracy, kappa, user, producer, entropy, purity, quantity/allocation disagreement). Input field data points were repeatedly split into training and test sets via bootstrapping, Monte Carlo cross-validation (67:33 and 80:20 split ratios) and k-fold (5-fold) cross-validation. Additionally, within the cross-validation, we tested four designs: simple random, block hold-out, stratification by class, and stratification by both class and space. A classification was performed for every split of every methodological combination (100’s iterations each), creating sampling distributions for the mapped area of each class and the accuracy metrics. We found that regardless of resampling design, a single split of data into training and test sets results in a large variance in estimates of accuracy and mapped area. In the worst case, overall accuracy varied between ~40–80% in one resampling design, due only to random variation in partitioning into training and test sets. On the other hand, we found that all resampling procedures provided accurate estimates of error, and that they can also provide confidence intervals that are informative about the performance and uncertainty of the classifier. Importantly, we show that these confidence intervals commonly encompassed the magnitudes of increase or decrease in accuracy that are often cited in literature as justification for methodological or sampling design choices. We also show how a resampling approach enables generation of spatially continuous maps of classification uncertainty. Based on our results, we make recommendations about which resampling design to use and how it could be implemented. We also provide a fully worked mapping example, which includes traditional inference of uncertainty from the error matrix and provides examples for presenting the final map and its accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
科研通AI5应助橙子采纳,获得10
1秒前
Magali发布了新的文献求助10
3秒前
4秒前
7秒前
小鹿发布了新的文献求助10
9秒前
科研通AI2S应助橙子采纳,获得10
18秒前
ZOVF给moomomomomo的求助进行了留言
40秒前
包容的剑完成签到 ,获得积分10
56秒前
小鸟芋圆露露完成签到 ,获得积分10
1分钟前
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
1分钟前
赘婿应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
CodeCraft应助勇往直前采纳,获得10
1分钟前
1分钟前
勇往直前发布了新的文献求助10
1分钟前
橙子发布了新的文献求助10
2分钟前
yin_ym完成签到,获得积分20
2分钟前
脑洞疼应助yin_ym采纳,获得10
2分钟前
点心完成签到,获得积分10
2分钟前
cy0824完成签到 ,获得积分10
2分钟前
李爱国应助吃吃采纳,获得10
2分钟前
P_Chem完成签到,获得积分10
2分钟前
3分钟前
研友_nE1dDn完成签到 ,获得积分20
3分钟前
yin_ym发布了新的文献求助10
3分钟前
搜集达人应助科研通管家采纳,获得10
3分钟前
上官若男应助yin_ym采纳,获得10
3分钟前
3分钟前
4分钟前
yin_ym发布了新的文献求助10
4分钟前
pinklay完成签到 ,获得积分10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
共享精神应助科研通管家采纳,获得10
5分钟前
cj326发布了新的文献求助10
5分钟前
小胡爱科研完成签到 ,获得积分10
6分钟前
归海浩阑发布了新的文献求助50
6分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674431
求助须知:如何正确求助?哪些是违规求助? 3229731
关于积分的说明 9786993
捐赠科研通 2940242
什么是DOI,文献DOI怎么找? 1611830
邀请新用户注册赠送积分活动 761043
科研通“疑难数据库(出版商)”最低求助积分说明 736427