CT-based Radiomics Signature to Discriminate High-grade From Low-grade Colorectal Adenocarcinoma

无线电技术 医学 判别式 接收机工作特性 腺癌 置信区间 结直肠癌 曼惠特尼U检验 签名(拓扑) 大肠腺癌 放射科 机构审查委员会 内科学 人工智能 计算机科学 癌症 外科 数学 几何学
作者
Xiaomei Huang,Zixuan Cheng,Yanqi Huang,Cuishan Liang,Lan He,Zelan Ma,Xin Chen,Xiaomei Wu,Yexing Li,Changhong Liang,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier]
卷期号:25 (10): 1285-1297 被引量:55
标识
DOI:10.1016/j.acra.2018.01.020
摘要

To develop and validate a computed tomography-based radiomics signature for preoperatively discriminating high-grade from low-grade colorectal adenocarcinoma (CRAC).This retrospective study was approved by our institutional review board, and the informed consent requirement was waived. This study enrolled 366 patients with CRAC (training dataset: n = 222, validation dataset: n = 144) from January 2008 to August 2015. A radiomics signature was developed with the least absolute shrinkage and selection operator method in training dataset. Mann-Whitney U test was applied to explore the correlation between radiomics signature and histologic grade. The discriminative power of radiomics signature was investigated with the receiver operating characteristics curve. An independent validation dataset was used to confirm the predictive performance. We further performed a stratified analysis to validate the predictive performance of radiomics signature in colon adenocarcinoma and rectal adenocarcinoma.The radiomics signature demonstrated discriminative performance for high-grade and low-grade CRAC, with an area under the curve of 0.812 (95% confidence interval [CI]: 0.749-0.874) in training dataset and 0.735 (95%CI: 0.644-0.826) in validation dataset. Stratified analysis demonstrated that radiomics signature also showed distinguishing ability for histologic grade in both colon adenocarcinoma and rectal adenocarcinoma, with area under the curve of 0.725 (95%CI: 0.653-0.797) and 0.895 (95%CI: 0.838-0.952), respectively.We developed and validated a radiomics signature as a complementary tool to differentiate high-grade from low-grade CRAC preoperatively, which may make contribution to personalized treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
1秒前
思源应助苹果向露采纳,获得10
2秒前
2秒前
李健应助happy采纳,获得10
2秒前
文献小白完成签到 ,获得积分10
3秒前
浮游应助激动的访波采纳,获得10
3秒前
bkagyin应助激动的访波采纳,获得10
3秒前
4秒前
可闲发布了新的文献求助10
5秒前
6秒前
行寂静行完成签到 ,获得积分10
7秒前
自觉语琴完成签到 ,获得积分10
8秒前
NMC发布了新的文献求助10
9秒前
共享精神应助小宇OvO采纳,获得10
10秒前
机灵毛豆完成签到 ,获得积分10
10秒前
刘清河发布了新的文献求助10
10秒前
小禾完成签到 ,获得积分10
11秒前
12秒前
zjy完成签到,获得积分10
12秒前
12秒前
13秒前
齐齐完成签到,获得积分20
13秒前
shr完成签到,获得积分10
14秒前
奥拉同学完成签到,获得积分10
15秒前
易水完成签到 ,获得积分10
15秒前
happy发布了新的文献求助10
15秒前
可闲完成签到,获得积分20
16秒前
18秒前
柚柚子完成签到,获得积分10
21秒前
精油完成签到,获得积分10
21秒前
23秒前
mr完成签到 ,获得积分10
24秒前
中论文呢发布了新的文献求助10
25秒前
25秒前
25秒前
感动的莞发布了新的文献求助10
26秒前
糜灭龙完成签到,获得积分10
29秒前
科研通AI6应助tong采纳,获得10
29秒前
小宇OvO发布了新的文献求助10
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499097
求助须知:如何正确求助?哪些是违规求助? 4596115
关于积分的说明 14452329
捐赠科研通 4529231
什么是DOI,文献DOI怎么找? 2481872
邀请新用户注册赠送积分活动 1465897
关于科研通互助平台的介绍 1438802