DeepDTA: deep drug–target binding affinity prediction

结合亲和力 计算机科学 水准点(测量) 药物发现 二元分类 卷积神经网络 亲缘关系 人工智能 药物靶点 鉴定(生物学) 机器学习 计算生物学 深度学习 化学 生物信息学 支持向量机 生物 立体化学 生物化学 植物 受体 大地测量学 地理
作者
Hakime Öztürk,Arzucan Özgür,Elif Özkırımlı
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:34 (17): i821-i829 被引量:1069
标识
DOI:10.1093/bioinformatics/bty593
摘要

The identification of novel drug-target (DT) interactions is a substantial part of the drug discovery process. Most of the computational methods that have been proposed to predict DT interactions have focused on binary classification, where the goal is to determine whether a DT pair interacts or not. However, protein-ligand interactions assume a continuum of binding strength values, also called binding affinity and predicting this value still remains a challenge. The increase in the affinity data available in DT knowledge-bases allows the use of advanced learning techniques such as deep learning architectures in the prediction of binding affinities. In this study, we propose a deep-learning based model that uses only sequence information of both targets and drugs to predict DT interaction binding affinities. The few studies that focus on DT binding affinity prediction use either 3D structures of protein-ligand complexes or 2D features of compounds. One novel approach used in this work is the modeling of protein sequences and compound 1D representations with convolutional neural networks (CNNs). The results show that the proposed deep learning based model that uses the 1D representations of targets and drugs is an effective approach for drug target binding affinity prediction. The model in which high-level representations of a drug and a target are constructed via CNNs achieved the best Concordance Index (CI) performance in one of our larger benchmark data sets, outperforming the KronRLS algorithm and SimBoost, a state-of-the-art method for DT binding affinity prediction.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
华仔应助长苼采纳,获得10
9秒前
万松辉完成签到,获得积分10
20秒前
biu完成签到 ,获得积分10
20秒前
21秒前
勇yi完成签到,获得积分10
24秒前
阿星捌发布了新的文献求助10
27秒前
韩韩完成签到 ,获得积分10
34秒前
无极微光应助张鱼小丸子采纳,获得20
42秒前
mengli完成签到 ,获得积分10
46秒前
科研通AI6.1应助阿星捌采纳,获得10
49秒前
张鱼小丸子完成签到,获得积分10
50秒前
53秒前
53秒前
53秒前
53秒前
53秒前
53秒前
53秒前
53秒前
53秒前
53秒前
SPARK应助科研通管家采纳,获得10
54秒前
SPARK应助科研通管家采纳,获得10
54秒前
SPARK应助科研通管家采纳,获得10
54秒前
乐乐应助Robin95采纳,获得30
58秒前
azzkmj发布了新的文献求助10
58秒前
费老五完成签到 ,获得积分10
58秒前
科研通AI6.2应助zyp采纳,获得10
1分钟前
舒心的雍发布了新的文献求助10
1分钟前
黙宇循光完成签到 ,获得积分10
1分钟前
yhh完成签到,获得积分10
1分钟前
仙兮熙完成签到 ,获得积分10
1分钟前
u亩完成签到 ,获得积分10
1分钟前
一眼完成签到,获得积分20
1分钟前
1分钟前
冬虫夏草完成签到,获得积分10
1分钟前
zyp发布了新的文献求助10
1分钟前
qweqwe完成签到,获得积分10
1分钟前
1分钟前
Banbor2021完成签到,获得积分10
1分钟前
高分求助中
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
The Impact of Lease Accounting Standards on Lending and Investment Decisions 250
The Linearization Handbook for MILP Optimization: Modeling Tricks and Patterns for Practitioners (MILP Optimization Handbooks) 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5851942
求助须知:如何正确求助?哪些是违规求助? 6274706
关于积分的说明 15627471
捐赠科研通 4967879
什么是DOI,文献DOI怎么找? 2678818
邀请新用户注册赠送积分活动 1623007
关于科研通互助平台的介绍 1579466