Machine learning assisted SRAF placement for full chip

计算机科学 进程窗口 光学接近校正 平版印刷术 过程(计算) 算法 抵抗 化学 图层(电子) 光电子学 物理 有机化学 操作系统
作者
Jing Su,Quan Zhang,Weichun Fong,Dezheng Sun,Cuiping Zhang,Chenxi Lin,Shibing Wang,Been-Der Chen,Stanislas Baron,Rafael C. Howell,Stephen Hsu,Larry Luo,Yi Zou,Yen‐Wen Lu,Yu Cao
标识
DOI:10.1117/12.2283493
摘要

Sub-Resolution Assist Features (SRAF) are widely used for Process Window (PW) enhancement in computational lithography. Rule-Based SRAF (RB-SRAF) methods work well with simple designs and regular repeated patterns, but require a long development cycle involving Litho, OPC, and design-technology co-optimization (DTCO) engineers. Furthermore, RB-SRAF is heuristics-based and there is no guarantee that SRAF placement is optimal for complex patterns. In contrast, the Model-Based SRAF (MB-SRAF) technique to construct SRAFs using the guidance map is sufficient to provide the required process window for the 32nm node and below. It provides an improved lithography margin for full chip and removes the challenge of developing manually complex rules to assist 2D structures. The machine learning assisted SRAF placement technique developed on the ASML Brion Tachyon platform allows us to push the limits of MB-SRAF even further. A Deep Convolutional Neural Network (DCNN) is trained using a Continuous Transmission Mask (CTM) that is fully optimized by the Tachyon inverse lithography engine. The neural network generated SRAF guidance map is then used to assist full-chip SRAF placement. This is different from the current full-chip MB-SRAF approach which utilizes a guidance map of mask sensitivity to improve the contrast of optical image at the edge of lithography target patterns. We expect that machine learning assisted SRAF placement can achieve a superior process window compared to the MB-SRAF method, with a full-chip affordable runtime significantly faster than inverse lithography. We will describe the current status of machine learning assisted SRAF technique and demonstrate its application on the full chip mask synthesis and how it can extend the computational lithography roadmap.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
1秒前
WAMK发布了新的文献求助30
1秒前
贺贺完成签到,获得积分10
1秒前
今后应助秋空采纳,获得10
2秒前
虚幻青筠完成签到 ,获得积分10
2秒前
华仔应助风吹草动玉米粒采纳,获得10
2秒前
小橙子发布了新的文献求助10
3秒前
3秒前
活泼的铃铛完成签到,获得积分20
4秒前
CipherSage应助愉快芜榆采纳,获得10
4秒前
juqiu发布了新的文献求助10
4秒前
4秒前
5秒前
Ava应助feizhuliu采纳,获得10
5秒前
lxy发布了新的文献求助10
5秒前
chenjunyong17完成签到,获得积分10
5秒前
悲凉的新筠完成签到,获得积分20
7秒前
乐天完成签到,获得积分10
7秒前
活泼听露发布了新的文献求助10
7秒前
8秒前
传奇3应助juqiu采纳,获得10
8秒前
隐形曼青应助sinlar采纳,获得10
8秒前
8秒前
张nmky完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
Hello应助沉静秋尽采纳,获得10
10秒前
Gc发布了新的文献求助10
11秒前
11秒前
biye完成签到 ,获得积分10
11秒前
11秒前
东糸容完成签到,获得积分10
12秒前
退休小行星完成签到,获得积分10
12秒前
勤恳易谙发布了新的文献求助10
13秒前
追梦1998发布了新的文献求助10
13秒前
siina发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783962
求助须知:如何正确求助?哪些是违规求助? 5680156
关于积分的说明 15462775
捐赠科研通 4913312
什么是DOI,文献DOI怎么找? 2644592
邀请新用户注册赠送积分活动 1592399
关于科研通互助平台的介绍 1547026