Machine learning assisted SRAF placement for full chip

计算机科学 进程窗口 光学接近校正 平版印刷术 过程(计算) 算法 抵抗 化学 图层(电子) 光电子学 操作系统 物理 有机化学
作者
Jing Su,Quan Zhang,Weichun Fong,Dezheng Sun,Cuiping Zhang,Chenxi Lin,Shibing Wang,Been-Der Chen,Stanislas Baron,Rafael C. Howell,Stephen Hsu,Larry Luo,Yi Zou,Yen‐Wen Lu,Yu Cao
标识
DOI:10.1117/12.2283493
摘要

Sub-Resolution Assist Features (SRAF) are widely used for Process Window (PW) enhancement in computational lithography. Rule-Based SRAF (RB-SRAF) methods work well with simple designs and regular repeated patterns, but require a long development cycle involving Litho, OPC, and design-technology co-optimization (DTCO) engineers. Furthermore, RB-SRAF is heuristics-based and there is no guarantee that SRAF placement is optimal for complex patterns. In contrast, the Model-Based SRAF (MB-SRAF) technique to construct SRAFs using the guidance map is sufficient to provide the required process window for the 32nm node and below. It provides an improved lithography margin for full chip and removes the challenge of developing manually complex rules to assist 2D structures. The machine learning assisted SRAF placement technique developed on the ASML Brion Tachyon platform allows us to push the limits of MB-SRAF even further. A Deep Convolutional Neural Network (DCNN) is trained using a Continuous Transmission Mask (CTM) that is fully optimized by the Tachyon inverse lithography engine. The neural network generated SRAF guidance map is then used to assist full-chip SRAF placement. This is different from the current full-chip MB-SRAF approach which utilizes a guidance map of mask sensitivity to improve the contrast of optical image at the edge of lithography target patterns. We expect that machine learning assisted SRAF placement can achieve a superior process window compared to the MB-SRAF method, with a full-chip affordable runtime significantly faster than inverse lithography. We will describe the current status of machine learning assisted SRAF technique and demonstrate its application on the full chip mask synthesis and how it can extend the computational lithography roadmap.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
失眠采白发布了新的文献求助10
2秒前
丘比特应助yixing采纳,获得10
4秒前
4秒前
dong应助zyq采纳,获得10
5秒前
科研通AI5应助FZU_ChyL采纳,获得10
5秒前
Melon完成签到,获得积分10
6秒前
1111发布了新的文献求助10
7秒前
上官若男应助椰椰采纳,获得10
8秒前
8秒前
深情安青应助共情采纳,获得10
8秒前
10秒前
煎饼果子完成签到,获得积分10
10秒前
zj3tears发布了新的文献求助10
11秒前
必中发布了新的文献求助10
12秒前
12秒前
13秒前
干净问筠完成签到,获得积分10
13秒前
zhangyu应助小树苗采纳,获得10
13秒前
华仔应助JFP采纳,获得10
13秒前
17秒前
ChrisKim完成签到,获得积分10
17秒前
18秒前
LMZ发布了新的文献求助10
18秒前
HIT_WXY完成签到,获得积分10
18秒前
19秒前
19秒前
宇宙最萌小猫咪完成签到 ,获得积分10
20秒前
乐乐应助大方小白采纳,获得10
20秒前
Ava应助felixsun采纳,获得10
21秒前
共情完成签到,获得积分20
21秒前
Jasper应助豆豆采纳,获得10
21秒前
上官若男应助小野狼采纳,获得10
21秒前
Archy发布了新的文献求助10
22秒前
23秒前
24秒前
万能图书馆应助mty采纳,获得10
25秒前
犹豫白风发布了新的文献求助10
25秒前
25秒前
野子发布了新的文献求助10
26秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992840
求助须知:如何正确求助?哪些是违规求助? 3533621
关于积分的说明 11263330
捐赠科研通 3273416
什么是DOI,文献DOI怎么找? 1806029
邀请新用户注册赠送积分活动 882889
科研通“疑难数据库(出版商)”最低求助积分说明 809619