Machine learning assisted SRAF placement for full chip

计算机科学 并行计算 炸薯条 电信
作者
Jing Su,Quan Zhang,Weichun Fong,Dezheng Sun,Cuiping Zhang,Chenxi Lin,Shibing Wang,Been-Der Chen,Baron S,Rafael C. Howell,Sheng Teng Hsu,Larry Luo,Yi Zou,Yen‐Wen Lu,Yu Cao
标识
DOI:10.1117/12.2283493
摘要

Sub-Resolution Assist Features (SRAF) are widely used for Process Window (PW) enhancement in computational lithography. Rule-Based SRAF (RB-SRAF) methods work well with simple designs and regular repeated patterns, but require a long development cycle involving Litho, OPC, and design-technology co-optimization (DTCO) engineers. Furthermore, RB-SRAF is heuristics-based and there is no guarantee that SRAF placement is optimal for complex patterns. In contrast, the Model-Based SRAF (MB-SRAF) technique to construct SRAFs using the guidance map is sufficient to provide the required process window for the 32nm node and below. It provides an improved lithography margin for full chip and removes the challenge of developing manually complex rules to assist 2D structures. The machine learning assisted SRAF placement technique developed on the ASML Brion Tachyon platform allows us to push the limits of MB-SRAF even further. A Deep Convolutional Neural Network (DCNN) is trained using a Continuous Transmission Mask (CTM) that is fully optimized by the Tachyon inverse lithography engine. The neural network generated SRAF guidance map is then used to assist full-chip SRAF placement. This is different from the current full-chip MB-SRAF approach which utilizes a guidance map of mask sensitivity to improve the contrast of optical image at the edge of lithography target patterns. We expect that machine learning assisted SRAF placement can achieve a superior process window compared to the MB-SRAF method, with a full-chip affordable runtime significantly faster than inverse lithography. We will describe the current status of machine learning assisted SRAF technique and demonstrate its application on the full chip mask synthesis and how it can extend the computational lithography roadmap.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陈老太完成签到 ,获得积分10
2秒前
2秒前
2秒前
无花果应助羊可采纳,获得10
3秒前
顾矜应助PP采纳,获得10
3秒前
山水木完成签到,获得积分10
4秒前
QinQin发布了新的文献求助10
4秒前
4秒前
4秒前
zho关闭了zho文献求助
5秒前
852应助Cccrik采纳,获得10
5秒前
5秒前
关显锋发布了新的文献求助10
6秒前
美好斓发布了新的文献求助100
6秒前
华仔应助淡定碧玉采纳,获得10
6秒前
6秒前
IIIIIllllIIII应助嘀嘀哒哒采纳,获得30
6秒前
精明寄灵完成签到,获得积分10
7秒前
7秒前
YaleChen发布了新的文献求助10
7秒前
SYLH应助大气贞采纳,获得10
8秒前
8秒前
SciGPT应助雷雷呀呀采纳,获得10
9秒前
迅速念云完成签到,获得积分20
9秒前
动听牛排举报ku_zhang求助涉嫌违规
9秒前
9秒前
Owen应助CMUSK采纳,获得20
9秒前
慕青应助牟百采纳,获得10
10秒前
10秒前
舒克完成签到,获得积分10
10秒前
11秒前
An完成签到,获得积分10
11秒前
耶耶耶发布了新的文献求助10
11秒前
独特涫发布了新的文献求助10
11秒前
11秒前
LHW完成签到,获得积分10
11秒前
wodel完成签到,获得积分10
12秒前
鱼饼完成签到 ,获得积分10
12秒前
木头杨发布了新的文献求助10
12秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
中成药治疗优势病种临床应用指南 2000
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3447627
求助须知:如何正确求助?哪些是违规求助? 3043366
关于积分的说明 8993671
捐赠科研通 2731601
什么是DOI,文献DOI怎么找? 1498404
科研通“疑难数据库(出版商)”最低求助积分说明 692788
邀请新用户注册赠送积分活动 690578