不连续性分类
有限元法
流离失所(心理学)
内聚力模型
扩展有限元法
结构工程
强度因子
材料科学
压力(语言学)
巴黎法
裂缝闭合
机械
断裂力学
工程类
数学
数学分析
物理
心理学
语言学
哲学
心理治疗师
作者
Nicolas Moës,Ted Belytschko
标识
DOI:10.1016/s0013-7944(01)00128-x
摘要
The extended finite element method allows one to model displacement discontinuities which do not conform to interelement surfaces. This method is applied to modeling growth of arbitrary cohesive cracks. The growth of the cohesive zone is governed by requiring the stress intensity factors at the tip of the cohesive zone to vanish. This energetic approach avoids the evaluation of stresses at the mathematical tip of the crack. The effectiveness of the proposed approach is demonstrated by simulations of cohesive crack growth in concrete.
科研通智能强力驱动
Strongly Powered by AbleSci AI