The role of fuzzy logic in the management of uncertainty in expert systems

模糊逻辑 数学 知识库 谓词逻辑 模糊集 2型模糊集与系统 专家系统 人工智能 模糊集运算 计算机科学 描述逻辑
作者
Lotfi A. Zadeh
出处
期刊:Fuzzy Sets and Systems [Elsevier BV]
卷期号:11 (1-3): 199-227 被引量:1269
标识
DOI:10.1016/s0165-0114(83)80081-5
摘要

Management of uncertainty is an intrinsically important issue in the design of expert systems because much of the information in the knowledge base of a typical expert system is imprecise, incomplete or not totally reliable. In the existing expert systems, uncertainty is dealt with through a combination of predicate logic and probability-based methods. A serious shortcoming of these methods is that they are not capable of coming to grips with the pervasive fuzziness of information in the knowledge base, and, as a result, are mostly ad hoc in nature. An alternative approach to the management of uncertainty which is suggested in this paper is based on the use of fuzzy logic, which is the logic underlying approximate or, equivalently, fuzzy reasoning. A feature of fuzzy logic which is of particular importance to the management of uncertainty in expert systems is that it provides a systematic framework for dealing with fuzzy quantifiers, e.g., most, many, few, not very many, almost all, infrequently, about 0.8, etc. In this way, fuzzy logic subsumes both predicate logic and probability theory, and makes it possible to deal with different types of uncertainty within a single conceptual framework. In fuzzy logic, the deduction of a conclusion from a set of premises is reduced, in general, to the solution of a nonlinear program through the application of projection and extension principles. This approach to deduction leads to various basic syllogisms which may be used as rules of combination of evidence in expert systems. Among syllogisms of this type which are discussed in this paper are the intersection/product syllogism, the generalized modus ponens, the consequent conjunction syllogism, and the major-premise reversibility rule.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ssssxr发布了新的文献求助10
1秒前
李健的小迷弟应助shain采纳,获得10
1秒前
qiao完成签到,获得积分10
2秒前
3秒前
元来完成签到,获得积分10
5秒前
6秒前
我就是我完成签到,获得积分10
8秒前
李健应助fangfang采纳,获得10
9秒前
五六七发布了新的文献求助10
10秒前
SciGPT应助张正采纳,获得10
10秒前
ccc6195完成签到,获得积分10
10秒前
12秒前
mgh完成签到,获得积分20
12秒前
李健的小迷弟应助维尼采纳,获得30
13秒前
小王贼棒发布了新的文献求助10
15秒前
深情安青应助雷家采纳,获得10
15秒前
15秒前
16秒前
16秒前
17秒前
张雷应助ltft采纳,获得20
18秒前
顾矜应助聪慧的怀绿采纳,获得10
18秒前
19秒前
ss完成签到 ,获得积分10
19秒前
li完成签到,获得积分10
20秒前
ccc6195发布了新的文献求助10
20秒前
g7001完成签到,获得积分10
20秒前
张正发布了新的文献求助10
20秒前
qiu完成签到,获得积分20
20秒前
mawenxing完成签到,获得积分10
20秒前
何照人应助科研通管家采纳,获得10
21秒前
完美世界应助科研通管家采纳,获得10
21秒前
科研小菜狗完成签到,获得积分10
21秒前
柯一一应助科研通管家采纳,获得10
21秒前
搜集达人应助科研通管家采纳,获得10
21秒前
Akim应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967409
求助须知:如何正确求助?哪些是违规求助? 3512686
关于积分的说明 11164677
捐赠科研通 3247651
什么是DOI,文献DOI怎么找? 1793964
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804498