The role of fuzzy logic in the management of uncertainty in expert systems

模糊逻辑 数学 知识库 谓词逻辑 模糊集 2型模糊集与系统 专家系统 人工智能 模糊集运算 计算机科学 描述逻辑
作者
Lotfi A. Zadeh
出处
期刊:Fuzzy Sets and Systems [Elsevier]
卷期号:11 (1-3): 199-227 被引量:1269
标识
DOI:10.1016/s0165-0114(83)80081-5
摘要

Management of uncertainty is an intrinsically important issue in the design of expert systems because much of the information in the knowledge base of a typical expert system is imprecise, incomplete or not totally reliable. In the existing expert systems, uncertainty is dealt with through a combination of predicate logic and probability-based methods. A serious shortcoming of these methods is that they are not capable of coming to grips with the pervasive fuzziness of information in the knowledge base, and, as a result, are mostly ad hoc in nature. An alternative approach to the management of uncertainty which is suggested in this paper is based on the use of fuzzy logic, which is the logic underlying approximate or, equivalently, fuzzy reasoning. A feature of fuzzy logic which is of particular importance to the management of uncertainty in expert systems is that it provides a systematic framework for dealing with fuzzy quantifiers, e.g., most, many, few, not very many, almost all, infrequently, about 0.8, etc. In this way, fuzzy logic subsumes both predicate logic and probability theory, and makes it possible to deal with different types of uncertainty within a single conceptual framework. In fuzzy logic, the deduction of a conclusion from a set of premises is reduced, in general, to the solution of a nonlinear program through the application of projection and extension principles. This approach to deduction leads to various basic syllogisms which may be used as rules of combination of evidence in expert systems. Among syllogisms of this type which are discussed in this paper are the intersection/product syllogism, the generalized modus ponens, the consequent conjunction syllogism, and the major-premise reversibility rule.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助daydayup采纳,获得30
1秒前
chao发布了新的文献求助10
1秒前
2秒前
顾矜应助nsc采纳,获得10
2秒前
小马甲应助nsc采纳,获得10
2秒前
所所应助nsc采纳,获得10
2秒前
田様应助nsc采纳,获得10
2秒前
CipherSage应助nsc采纳,获得10
2秒前
华仔应助nsc采纳,获得10
2秒前
科目三应助nsc采纳,获得10
2秒前
希望天下0贩的0应助nsc采纳,获得10
3秒前
万能图书馆应助nsc采纳,获得10
3秒前
orixero应助nsc采纳,获得10
3秒前
jin发布了新的文献求助10
3秒前
4秒前
无一完成签到 ,获得积分10
4秒前
4秒前
ckz完成签到,获得积分10
5秒前
wu-sang完成签到,获得积分10
6秒前
peng完成签到,获得积分10
6秒前
Hello应助nsc采纳,获得10
8秒前
传奇3应助nsc采纳,获得10
8秒前
Lucas应助nsc采纳,获得10
9秒前
bkagyin应助nsc采纳,获得10
9秒前
田様应助nsc采纳,获得10
9秒前
英姑应助nsc采纳,获得10
9秒前
研友_VZG7GZ应助nsc采纳,获得10
9秒前
深情安青应助nsc采纳,获得10
9秒前
赘婿应助nsc采纳,获得30
9秒前
Owen应助nsc采纳,获得10
9秒前
9秒前
xianlu发布了新的文献求助10
9秒前
10秒前
杳鸢应助开放沛珊采纳,获得30
12秒前
鳗鱼不尤完成签到,获得积分10
13秒前
13秒前
AcetylCoA完成签到 ,获得积分10
14秒前
wanci应助nsc采纳,获得10
14秒前
田様应助nsc采纳,获得10
14秒前
在水一方应助nsc采纳,获得10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 400
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3292629
求助须知:如何正确求助?哪些是违规求助? 2928963
关于积分的说明 8439271
捐赠科研通 2601028
什么是DOI,文献DOI怎么找? 1419441
科研通“疑难数据库(出版商)”最低求助积分说明 660310
邀请新用户注册赠送积分活动 642965