The role of fuzzy logic in the management of uncertainty in expert systems

模糊逻辑 数学 知识库 谓词逻辑 模糊集 2型模糊集与系统 专家系统 人工智能 模糊集运算 计算机科学 描述逻辑
作者
Lotfi A. Zadeh
出处
期刊:Fuzzy Sets and Systems [Elsevier]
卷期号:11 (1-3): 199-227 被引量:1269
标识
DOI:10.1016/s0165-0114(83)80081-5
摘要

Management of uncertainty is an intrinsically important issue in the design of expert systems because much of the information in the knowledge base of a typical expert system is imprecise, incomplete or not totally reliable. In the existing expert systems, uncertainty is dealt with through a combination of predicate logic and probability-based methods. A serious shortcoming of these methods is that they are not capable of coming to grips with the pervasive fuzziness of information in the knowledge base, and, as a result, are mostly ad hoc in nature. An alternative approach to the management of uncertainty which is suggested in this paper is based on the use of fuzzy logic, which is the logic underlying approximate or, equivalently, fuzzy reasoning. A feature of fuzzy logic which is of particular importance to the management of uncertainty in expert systems is that it provides a systematic framework for dealing with fuzzy quantifiers, e.g., most, many, few, not very many, almost all, infrequently, about 0.8, etc. In this way, fuzzy logic subsumes both predicate logic and probability theory, and makes it possible to deal with different types of uncertainty within a single conceptual framework. In fuzzy logic, the deduction of a conclusion from a set of premises is reduced, in general, to the solution of a nonlinear program through the application of projection and extension principles. This approach to deduction leads to various basic syllogisms which may be used as rules of combination of evidence in expert systems. Among syllogisms of this type which are discussed in this paper are the intersection/product syllogism, the generalized modus ponens, the consequent conjunction syllogism, and the major-premise reversibility rule.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jason完成签到,获得积分10
刚刚
1秒前
思源应助sssssss采纳,获得10
1秒前
雪雪发布了新的文献求助10
1秒前
疯狂的山楂完成签到 ,获得积分10
2秒前
未雨完成签到,获得积分10
2秒前
Akim应助wf采纳,获得10
2秒前
sunsun10086完成签到 ,获得积分10
3秒前
琦琦完成签到 ,获得积分10
3秒前
3秒前
科目三应助xanderxue采纳,获得10
3秒前
3秒前
晶晶发布了新的文献求助10
3秒前
森森完成签到,获得积分10
4秒前
4秒前
Ava应助温暖的颜演采纳,获得10
4秒前
Ky_Mac应助Lee采纳,获得20
5秒前
ww发布了新的文献求助10
5秒前
5秒前
6秒前
抗氧剂完成签到,获得积分20
7秒前
直率的玉米完成签到 ,获得积分10
7秒前
英俊的铭应助ZMl采纳,获得10
7秒前
7秒前
爆米花应助wh雨采纳,获得10
7秒前
丘比特应助冷水鱼采纳,获得10
7秒前
LiZH完成签到,获得积分10
8秒前
9秒前
传奇3应助ivy采纳,获得10
9秒前
9秒前
Persepolis完成签到,获得积分10
9秒前
mm完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
小蘑菇应助sweettt3采纳,获得10
10秒前
12秒前
花粉过敏发布了新的文献求助10
12秒前
xianglinnnn完成签到,获得积分10
12秒前
陈2026完成签到,获得积分10
12秒前
xmj发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710603
求助须知:如何正确求助?哪些是违规求助? 5199800
关于积分的说明 15261321
捐赠科研通 4863194
什么是DOI,文献DOI怎么找? 2610478
邀请新用户注册赠送积分活动 1560802
关于科研通互助平台的介绍 1518423