材料科学
光引发剂
环氧树脂
阳离子聚合
聚合
聚合物
自愈
光致聚合物
自愈材料
化学工程
热稳定性
溶剂
纳米复合材料
固化(化学)
复合材料
高分子化学
有机化学
化学
单体
病理
工程类
替代医学
医学
作者
Wanchun Guo,Yin Jia,Kesong Tian,Zhaopeng Xu,Jiao Jiao,Ruifei Li,Yuehao Wu,Ling Cao,Haiyan Wang
标识
DOI:10.1021/acsami.6b06091
摘要
UV-triggered self-healing of single microcapsules has been a good candidate to enhance the life of polymer-based aerospace coatings because of its rapid healing process and healing chemistry based on an accurate stoichiometric ratio. However, free radical photoinitiators used in single microcapsules commonly suffer from possible deactivation due to the presence of oxygen in the space environment. Moreover, entrapment of polymeric microcapsules into coatings often involves elevated temperature or a strong solvent, probably leading to swelling or degradation of polymer shell, and ultimately the loss of active healing species into the host matrix. We herein describe the first single robust SiO2 microcapsule self-healing system based on UV-triggered cationic polymerization for potential application in aerospace coatings. On the basis of the similarity of solubility parameters of the active healing species and the SiO2 precursor, the epoxy resin and cationic photoinitiator are successfully encapsulated into a single SiO2 microcapsule via a combined interfacial/in situ polymerization. The single SiO2 microcapsule shows solvent resistance and thermal stability, especially a strong resistance for thermal cycling in a simulated space environment. In addition, the up to 89% curing efficiency of the epoxy resin in 30 min, and the obvious filling of scratches in the epoxy matrix demonstrate the excellent UV-induced healing performance of SiO2 microcapsules, attributed to a high load of healing species within the capsule (up to 87 wt %) and healing chemistry based on an accurate stoichiometric ratio of the photoinitiator and epoxy resin at 9/100. More importantly, healing chemistry based on a UV-triggered cationic polymerization mechanism is not sensitive to oxygen, extremely facilitating future embedment of this single SiO2 microcapsule in spacecraft coatings to achieve self-healing in a space environment with abundant UV radiation and oxygen.
科研通智能强力驱动
Strongly Powered by AbleSci AI