A Long-Lived Triplet State Is the Entrance Gateway to Oxidative Photochemistry in Green Fluorescent Proteins

化学 光化学 荧光 三重态 网关(网页) 氧化磷酸化 分子 生物化学 光学 计算机科学 物理 万维网 有机化学
作者
Martin Byrdin,Chenxi Duan,Dominique Bourgeois,Klaus Brettel
出处
期刊:Journal of the American Chemical Society [American Chemical Society]
卷期号:140 (8): 2897-2905 被引量:35
标识
DOI:10.1021/jacs.7b12755
摘要

Though ubiquitously used as selective fluorescence markers in cellular biology, fluorescent proteins (FPs) still have not disclosed all of their surprising properties. One important issue, notably for single-molecule applications, is the nature of the triplet state, suggested to be the starting point for many possible photochemical reactions leading to phenomena such as blinking or bleaching. Here, we applied transient absorption spectroscopy to characterize dark states in the prototypical enhanced green fluorescent protein (EGFP) of hydrozoan origin and, for comparison, in IrisFP, a representative phototransformable FP of anthozoan origin. We identified a long-lived (approximately 5 ms) dark state that is formed with a quantum yield of approximately 1% and has pronounced absorption throughout the visible-NIR range (peak at around 900 nm). Detection of phosphorescence emission with identical kinetics and excitation spectrum allowed unambiguous identification of this state as the first excited triplet state of the deprotonated chromophore. This triplet state was further characterized by determining its phosphorescence emission spectrum, the temperature dependence of its decay kinetics and its reactivity toward oxygen and electron acceptors and donors. It is suggested that it is this triplet state that lies at the origin of oxidative photochemistry in green FPs, leading to phenomena such as so-called "oxidative redding", "primed photoconversion", or, in a manner similar to that previously observed for organic dyes, redox induced blinking control with the reducing and oxidizing system ("ROXS").
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
复杂薯片完成签到,获得积分10
刚刚
直率的羊青完成签到 ,获得积分10
刚刚
12完成签到,获得积分10
刚刚
在水一方应助baba小天后采纳,获得10
1秒前
小管发布了新的文献求助10
1秒前
1秒前
qqqq发布了新的文献求助10
1秒前
2秒前
wp完成签到,获得积分10
2秒前
卢雅妮完成签到 ,获得积分10
2秒前
赵雪杰完成签到,获得积分20
2秒前
hana发布了新的文献求助10
2秒前
李李发布了新的文献求助10
3秒前
3秒前
精明之双发布了新的文献求助10
3秒前
今后应助郝宝真采纳,获得10
3秒前
园游会完成签到,获得积分10
4秒前
mom发布了新的文献求助10
4秒前
orixero应助lsd采纳,获得10
5秒前
122完成签到,获得积分10
5秒前
bkagyin应助WTT采纳,获得10
5秒前
6秒前
Hoyal_He发布了新的文献求助10
6秒前
6秒前
7秒前
liberty完成签到,获得积分10
7秒前
冲锋的大头菜完成签到,获得积分10
7秒前
小管完成签到,获得积分10
7秒前
123发布了新的文献求助10
7秒前
思源应助博利采纳,获得10
8秒前
重要无极发布了新的文献求助10
8秒前
9秒前
houha233完成签到,获得积分10
9秒前
Daily完成签到,获得积分10
9秒前
若水三千发布了新的文献求助10
9秒前
huqing完成签到,获得积分10
9秒前
10秒前
10秒前
居北完成签到,获得积分20
11秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3144366
求助须知:如何正确求助?哪些是违规求助? 2795962
关于积分的说明 7817099
捐赠科研通 2452017
什么是DOI,文献DOI怎么找? 1304837
科研通“疑难数据库(出版商)”最低求助积分说明 627295
版权声明 601419