估计员
数学
协方差
稳健性(进化)
信息几何学
应用数学
黎曼流形
协方差矩阵
厄米矩阵
统计流形
歧管(流体力学)
正定矩阵
M-估计量
数学优化
统计
纯数学
特征向量
标量曲率
曲率
化学
物理
工程类
基因
机械工程
量子力学
生物化学
几何学
作者
Xiaoqiang Hua,Yongqiang Cheng,Hongqiang Wang,Yuliang Qin
出处
期刊:Entropy
[MDPI AG]
日期:2018-03-23
卷期号:20 (4): 219-219
被引量:21
摘要
This paper proposes a class of covariance estimators based on information divergences in heterogeneous environments. In particular, the problem of covariance estimation is reformulated on the Riemannian manifold of Hermitian positive-definite (HPD) matrices. The means associated with information divergences are derived and used as the estimators. Without resorting to the complete knowledge of the probability distribution of the sample data, the geometry of the Riemannian manifold of HPD matrices is considered in mean estimators. Moreover, the robustness of mean estimators is analyzed using the influence function. Simulation results indicate the robustness and superiority of an adaptive normalized matched filter with our proposed estimators compared with the existing alternatives.
科研通智能强力驱动
Strongly Powered by AbleSci AI