材料科学
晶格常数
凝聚态物理
格子(音乐)
薄膜
应变工程
相变
纳米技术
电阻式触摸屏
兴奋剂
光电子学
化学物理
光学
衍射
电气工程
硅
物理
工程类
声学
作者
Qi Jia,J. Grenzer,Huabing He,W. Anwand,Yanda Ji,Ye Yuan,Kai Huang,Tiangui You,Wenjie Yu,Wei Ren,Xinzhong Chen,Mengkun Liu,Stefan Facsko,Xi Wang,Xin Ou
标识
DOI:10.1002/admi.201701268
摘要
Abstract The ability to manipulate the metal–insulator transition (MIT) of metal oxides is of critical importance for fundamental investigations of electron correlations and practical implementations of power efficient tunable electrical and optical devices. Most of the existing techniques including chemical doping and epitaxial strain modification can only modify the global transition temperature, while the capability to locally manipulate MIT is still lacking for developing highly integrated functional devices. Here, lattice engineering induced by the energetic noble gas ion allowing a 3D local manipulation of the MIT in VO 2 films is demonstrated and a spatial resolution laterally within the micrometer scale is reached. Ion‐induced open volume defects efficiently modify the lattice constants of VO 2 and consequently reduce the MIT temperature continuously from 341 to 275 K. According to a density functional theory calculation, the effect of lattice constant variation reduces the phase change energy barrier and therefore triggers the MIT at a much lower temperature. VO 2 films with multiple transitions in both in‐plane and out‐of‐plane dimensions can be achieved by implantation through a shadow mask or multienergy implantation. Based on this method, temperature‐controlled VO 2 metasurface structure is demonstrated by tuning only locally the MIT behavior on the VO 2 surfaces.
科研通智能强力驱动
Strongly Powered by AbleSci AI