石墨烯
材料科学
电解质
氧化物
锂(药物)
离子电导率
无机化学
电池(电)
溶剂
量子点
化学工程
纳米技术
化学
物理化学
有机化学
电极
医学
内分泌学
工程类
冶金
功率(物理)
物理
量子力学
作者
Yen‐Ming Chen,Shih‐Ting Hsu,Yu‐Hsien Tseng,Te‐Fu Yeh,Sheng‐Shu Hou,Jeng‐Shiung Jan,Yuh‐Lang Lee,Hsisheng Teng
出处
期刊:Small
[Wiley]
日期:2018-02-13
卷期号:14 (12)
被引量:57
标识
DOI:10.1002/smll.201703571
摘要
Abstract This study uses graphene oxide quantum dots (GOQDs) to enhance the Li + ‐ion mobility of a gel polymer electrolyte (GPE) for lithium‐ion batteries (LIBs). The GPE comprises a framework of poly(acrylonitrile‐ co ‐vinylacetate) blended with poly(methyl methacrylate) and a salt LiPF 6 solvated in carbonate solvents. The GOQDs, which function as acceptors, are small (3−11 nm) and well dispersed in the polymer framework. The GOQDs suppress the formation of ion−solvent clusters and immobilize anions, affording the GPE a high ionic conductivity and a high Li + ‐ion transference number (0.77). When assembled into Li|electrolyte|LiFePO 4 batteries, the GPEs containing GOQDs preserve the battery capacity at high rates (up to 20 C) and exhibit 100% capacity retention after 500 charge−discharge cycles. Smaller GOQDs are more effective in GPE performance enhancement because of the higher dispersion of QDs. The minimization of both the ion−solvent clusters and degree of Li + ‐ion solvation in the GPEs with GOQDs results in even plating and stripping of the Li‐metal anode; therefore, Li dendrite formation is suppressed during battery operation. This study demonstrates a strategy of using small GOQDs with tunable properties to effectively modulate ion−solvent coordination in GPEs and thus improve the performance and lifespan of LIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI