铽
化学
荧光
核苷酸
离子
鸟苷
检出限
碳纤维
光化学
生物物理学
生物化学
有机化学
基因
材料科学
色谱法
物理
量子力学
生物
复合数
复合材料
作者
Binbin Chen,Meng Li Liu,Lei Zhan,Chun Mei Li,Cheng Zhi Huang
标识
DOI:10.1021/acs.analchem.7b05149
摘要
Highly selective and sensitive detection of guanosine 3′-diphosphate-5′-diphosphate (ppGpp), namely, the stringent in plants or microorganisms responding to strict or extreme environmental conditions such as stress and starvation, which plays an important role in gene expression, rRNA and antibiotics production, regulations of virulence of bacteria, and growth of plants, faces a great challenge owing to its extreme similarity to normal nucleotides. By modifying the surface groups of a facile two-step hydrothermal route prepared carbon dots (CDs) with terbium ions (Tb3+) in this contribution, a novel fluorescent probe with excellent properties such as highly physical and chemical stability, narrow emission and excitation wavelength-independent emission was prepared. The Tb3+ ions on the surface of CDs cannot only preserve the intrinsic fluorescence (FL) of CDs but also keep its own coordination capacity with rare earth complex, and thus the clamp structure (four phosphate groups) of ppGpp can specific binding with Tb3+ ions on the surface of CDs to produce antenna effect. Therefore, a highly selective and sensitive fluorescent ratiometry of ppGpp was developed by terbium-modified carbon dots (CDs-Tb) with the limit of detection as low as 50 nM based on the synergistic effect of antenna effect of Tb3+ ions and specific recognition capacity of CDs. The applicability of this assay was demonstrated by CDs-Tb-based paper sensor for high distinguishing ppGpp from other nucleotides with similar structure.
科研通智能强力驱动
Strongly Powered by AbleSci AI