Assessment of Antarctic moss health from multi-sensor UAS imagery with Random Forest Modelling

遥感 地理 计算机科学 植被(病理学) 卫星图像 归一化差异植被指数
作者
Darren Turner,Arko Lucieer,Zbyněk Malenovský,Diana H. King,Sharon A. Robinson
出处
期刊:International Journal of Applied Earth Observation and Geoinformation 卷期号:68: 168-179 被引量:21
标识
DOI:10.1016/j.jag.2018.01.004
摘要

Moss beds are one of very few terrestrial vegetation types that can be found on the Antarctic continent and as such mapping their extent and monitoring their health is important to environmental managers. Across Antarctica, moss beds are experiencing changes in health as their environment changes. As Antarctic moss beds are spatially fragmented with relatively small extent they require very high resolution remotely sensed imagery to monitor their distribution and dynamics. This study demonstrates that multi-sensor imagery collected by an Unmanned Aircraft System (UAS) provides a novel data source for assessment of moss health. In this study, we train a Random Forest Regression Model (RFM) with long-term field quadrats at a study site in the Windmill Islands, East Antarctica and apply it to UAS RGB and 6-band multispectral imagery, derived vegetation indices, 3D topographic data, and thermal imagery to predict moss health. Our results suggest that moss health, expressed as a percentage between 0 and 100% healthy, can be estimated with a root mean squared error (RMSE) between 7 and 12%. The RFM also quantifies the importance of input variables for moss health estimation showing the multispectral sensor data was important for accurate health prediction, such information being essential for planning future field investigations. The RFM was applied to the entire moss bed, providing an extrapolation of the health assessment across a larger spatial area. With further validation the resulting maps could be used for change detection of moss health across multiple sites and seasons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
在水一方应助科研通管家采纳,获得10
1秒前
烟花应助科研通管家采纳,获得10
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
祁灵枫完成签到,获得积分10
3秒前
特图图应助Brave采纳,获得30
4秒前
CWC完成签到,获得积分10
5秒前
优美的莹芝完成签到,获得积分10
7秒前
盛意完成签到,获得积分10
8秒前
9秒前
Orange应助peili采纳,获得10
10秒前
2025顺顺利利完成签到 ,获得积分10
10秒前
Jerry完成签到 ,获得积分10
11秒前
月夕完成签到 ,获得积分10
12秒前
微雨若,,完成签到 ,获得积分10
13秒前
18秒前
执念完成签到,获得积分10
21秒前
科研通AI2S应助Brave采纳,获得10
21秒前
22秒前
冷傲的帽子完成签到 ,获得积分10
23秒前
Chikit完成签到,获得积分0
24秒前
LPPQBB应助风清扬采纳,获得50
26秒前
笨笨的蓝天完成签到,获得积分10
27秒前
verymiao完成签到 ,获得积分10
28秒前
腾飞完成签到 ,获得积分10
32秒前
sora完成签到,获得积分10
33秒前
大地鼠妈妈完成签到,获得积分10
34秒前
纸条条完成签到 ,获得积分10
37秒前
柚子完成签到 ,获得积分10
38秒前
40秒前
wenbo完成签到,获得积分10
43秒前
叶y发布了新的文献求助10
44秒前
正行者1完成签到 ,获得积分10
47秒前
赧赧完成签到 ,获得积分10
49秒前
翁醉山完成签到 ,获得积分10
52秒前
Gaochang完成签到 ,获得积分10
54秒前
Moonchild完成签到 ,获得积分10
55秒前
非我完成签到 ,获得积分10
58秒前
义气完成签到 ,获得积分10
59秒前
个性问寒完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325651
求助须知:如何正确求助?哪些是违规求助? 4466021
关于积分的说明 13895204
捐赠科研通 4358353
什么是DOI,文献DOI怎么找? 2394037
邀请新用户注册赠送积分活动 1387459
关于科研通互助平台的介绍 1358320