Assessment of Antarctic moss health from multi-sensor UAS imagery with Random Forest Modelling

遥感 地理 计算机科学 植被(病理学) 卫星图像 归一化差异植被指数
作者
Darren Turner,Arko Lucieer,Zbyněk Malenovský,Diana H. King,Sharon A. Robinson
出处
期刊:International Journal of Applied Earth Observation and Geoinformation 卷期号:68: 168-179 被引量:21
标识
DOI:10.1016/j.jag.2018.01.004
摘要

Moss beds are one of very few terrestrial vegetation types that can be found on the Antarctic continent and as such mapping their extent and monitoring their health is important to environmental managers. Across Antarctica, moss beds are experiencing changes in health as their environment changes. As Antarctic moss beds are spatially fragmented with relatively small extent they require very high resolution remotely sensed imagery to monitor their distribution and dynamics. This study demonstrates that multi-sensor imagery collected by an Unmanned Aircraft System (UAS) provides a novel data source for assessment of moss health. In this study, we train a Random Forest Regression Model (RFM) with long-term field quadrats at a study site in the Windmill Islands, East Antarctica and apply it to UAS RGB and 6-band multispectral imagery, derived vegetation indices, 3D topographic data, and thermal imagery to predict moss health. Our results suggest that moss health, expressed as a percentage between 0 and 100% healthy, can be estimated with a root mean squared error (RMSE) between 7 and 12%. The RFM also quantifies the importance of input variables for moss health estimation showing the multispectral sensor data was important for accurate health prediction, such information being essential for planning future field investigations. The RFM was applied to the entire moss bed, providing an extrapolation of the health assessment across a larger spatial area. With further validation the resulting maps could be used for change detection of moss health across multiple sites and seasons.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
5秒前
量子星尘发布了新的文献求助10
8秒前
123456777完成签到 ,获得积分10
9秒前
12秒前
Horizon完成签到 ,获得积分10
15秒前
16秒前
难搞哦发布了新的文献求助100
16秒前
英吉利25发布了新的文献求助10
19秒前
YZzzJ完成签到 ,获得积分10
23秒前
dd完成签到 ,获得积分10
30秒前
wefor完成签到 ,获得积分10
32秒前
卞卞完成签到,获得积分10
37秒前
4652376完成签到 ,获得积分10
41秒前
七人七发布了新的文献求助10
42秒前
future完成签到 ,获得积分10
43秒前
搜集达人应助科研通管家采纳,获得10
44秒前
Bryan应助科研通管家采纳,获得10
44秒前
Bryan应助科研通管家采纳,获得10
44秒前
脑洞疼应助七人七采纳,获得10
47秒前
酷酷小子完成签到 ,获得积分10
49秒前
余呀余完成签到 ,获得积分10
49秒前
量子星尘发布了新的文献求助10
51秒前
SOL完成签到 ,获得积分10
55秒前
zhanlang完成签到 ,获得积分10
57秒前
1分钟前
swordshine完成签到,获得积分10
1分钟前
郑雅柔完成签到 ,获得积分0
1分钟前
jixuchance完成签到,获得积分10
1分钟前
难搞哦发布了新的文献求助10
1分钟前
难搞哦发布了新的文献求助10
1分钟前
难搞哦发布了新的文献求助10
1分钟前
难搞哦发布了新的文献求助10
1分钟前
1分钟前
难搞哦发布了新的文献求助10
1分钟前
健忘雁易完成签到 ,获得积分10
1分钟前
1分钟前
难搞哦发布了新的文献求助10
1分钟前
七人七发布了新的文献求助10
1分钟前
瘦瘦乌龟完成签到 ,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008687
求助须知:如何正确求助?哪些是违规求助? 3548349
关于积分的说明 11298805
捐赠科研通 3283020
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811218