Assessment of Antarctic moss health from multi-sensor UAS imagery with Random Forest Modelling

遥感 地理 计算机科学 植被(病理学) 卫星图像 归一化差异植被指数
作者
Darren Turner,Arko Lucieer,Zbyněk Malenovský,Diana H. King,Sharon A. Robinson
出处
期刊:International Journal of Applied Earth Observation and Geoinformation 卷期号:68: 168-179 被引量:21
标识
DOI:10.1016/j.jag.2018.01.004
摘要

Moss beds are one of very few terrestrial vegetation types that can be found on the Antarctic continent and as such mapping their extent and monitoring their health is important to environmental managers. Across Antarctica, moss beds are experiencing changes in health as their environment changes. As Antarctic moss beds are spatially fragmented with relatively small extent they require very high resolution remotely sensed imagery to monitor their distribution and dynamics. This study demonstrates that multi-sensor imagery collected by an Unmanned Aircraft System (UAS) provides a novel data source for assessment of moss health. In this study, we train a Random Forest Regression Model (RFM) with long-term field quadrats at a study site in the Windmill Islands, East Antarctica and apply it to UAS RGB and 6-band multispectral imagery, derived vegetation indices, 3D topographic data, and thermal imagery to predict moss health. Our results suggest that moss health, expressed as a percentage between 0 and 100% healthy, can be estimated with a root mean squared error (RMSE) between 7 and 12%. The RFM also quantifies the importance of input variables for moss health estimation showing the multispectral sensor data was important for accurate health prediction, such information being essential for planning future field investigations. The RFM was applied to the entire moss bed, providing an extrapolation of the health assessment across a larger spatial area. With further validation the resulting maps could be used for change detection of moss health across multiple sites and seasons.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助xiahua采纳,获得10
1秒前
Akim应助醉熏的青筠采纳,获得10
1秒前
默默飞阳发布了新的文献求助10
1秒前
董雪发布了新的文献求助10
1秒前
桐桐应助自由涔采纳,获得10
2秒前
乐乐应助藏藏采纳,获得10
2秒前
www完成签到 ,获得积分10
2秒前
3秒前
3秒前
SAD发布了新的文献求助20
3秒前
4秒前
qinghe完成签到,获得积分10
4秒前
XZTX完成签到,获得积分10
4秒前
绞股蓝完成签到,获得积分10
4秒前
Vegetable_Dog发布了新的文献求助10
5秒前
5秒前
科研通AI6.1应助Hydro采纳,获得10
5秒前
6秒前
希望早睡完成签到,获得积分10
6秒前
Lucas应助若杉采纳,获得10
8秒前
8秒前
Liii完成签到,获得积分10
8秒前
不会打预防针完成签到,获得积分10
8秒前
9秒前
勤恳易谙发布了新的文献求助10
9秒前
10秒前
欣欣向荣完成签到,获得积分10
10秒前
吴颖发布了新的文献求助10
10秒前
zeta完成签到 ,获得积分10
10秒前
wzhnb完成签到 ,获得积分20
11秒前
aicxx发布了新的文献求助10
11秒前
秋空发布了新的文献求助10
12秒前
乐正亦寒完成签到 ,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
史迪仔爱学习完成签到,获得积分10
13秒前
彩色从雪完成签到,获得积分10
13秒前
13秒前
13秒前
吸尘器完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5784063
求助须知:如何正确求助?哪些是违规求助? 5680443
关于积分的说明 15462954
捐赠科研通 4913367
什么是DOI,文献DOI怎么找? 2644620
邀请新用户注册赠送积分活动 1592452
关于科研通互助平台的介绍 1547078