Assessment of Antarctic moss health from multi-sensor UAS imagery with Random Forest Modelling

遥感 地理 计算机科学 植被(病理学) 卫星图像 归一化差异植被指数
作者
Darren Turner,Arko Lucieer,Zbyněk Malenovský,Diana H. King,Sharon A. Robinson
出处
期刊:International Journal of Applied Earth Observation and Geoinformation 卷期号:68: 168-179 被引量:21
标识
DOI:10.1016/j.jag.2018.01.004
摘要

Moss beds are one of very few terrestrial vegetation types that can be found on the Antarctic continent and as such mapping their extent and monitoring their health is important to environmental managers. Across Antarctica, moss beds are experiencing changes in health as their environment changes. As Antarctic moss beds are spatially fragmented with relatively small extent they require very high resolution remotely sensed imagery to monitor their distribution and dynamics. This study demonstrates that multi-sensor imagery collected by an Unmanned Aircraft System (UAS) provides a novel data source for assessment of moss health. In this study, we train a Random Forest Regression Model (RFM) with long-term field quadrats at a study site in the Windmill Islands, East Antarctica and apply it to UAS RGB and 6-band multispectral imagery, derived vegetation indices, 3D topographic data, and thermal imagery to predict moss health. Our results suggest that moss health, expressed as a percentage between 0 and 100% healthy, can be estimated with a root mean squared error (RMSE) between 7 and 12%. The RFM also quantifies the importance of input variables for moss health estimation showing the multispectral sensor data was important for accurate health prediction, such information being essential for planning future field investigations. The RFM was applied to the entire moss bed, providing an extrapolation of the health assessment across a larger spatial area. With further validation the resulting maps could be used for change detection of moss health across multiple sites and seasons.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助大家好车架号h采纳,获得10
刚刚
肥而不腻的羚羊完成签到,获得积分10
1秒前
victory应助杨杨采纳,获得30
1秒前
1秒前
书羽完成签到,获得积分10
2秒前
2秒前
科研通AI6应助peach采纳,获得10
3秒前
苹果初阳发布了新的文献求助10
3秒前
丘比特应助zhen采纳,获得10
3秒前
3秒前
虚心的芝麻完成签到,获得积分10
4秒前
禾苗完成签到,获得积分10
4秒前
彪壮的面包完成签到,获得积分10
4秒前
何求发布了新的文献求助10
4秒前
4秒前
小蘑菇应助研友_Z3vN0n采纳,获得80
5秒前
dj发布了新的文献求助10
5秒前
5秒前
Aom发布了新的文献求助10
5秒前
Zx_1993应助加勒比海带采纳,获得10
5秒前
6秒前
zila完成签到,获得积分10
6秒前
木木完成签到,获得积分10
6秒前
咸鱼发布了新的文献求助10
6秒前
哈哈哈大赞完成签到,获得积分10
7秒前
YWJ发布了新的文献求助10
7秒前
7秒前
张一亦可完成签到,获得积分10
7秒前
7秒前
鲁鱼完成签到,获得积分10
7秒前
NingZH发布了新的文献求助10
7秒前
王杰秀发布了新的文献求助10
7秒前
8秒前
灵巧山菡完成签到,获得积分10
8秒前
8秒前
CuCu发布了新的文献求助10
8秒前
默默善愁发布了新的文献求助10
9秒前
mojojo发布了新的文献求助10
9秒前
木木发布了新的文献求助10
9秒前
晓晖完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525966
求助须知:如何正确求助?哪些是违规求助? 4616113
关于积分的说明 14551945
捐赠科研通 4554358
什么是DOI,文献DOI怎么找? 2495803
邀请新用户注册赠送积分活动 1476217
关于科研通互助平台的介绍 1447879