Machine learning-based multi-documents sentiment-oriented summarization using linguistic treatment

自动汇总 计算机科学 自然语言处理 人工智能 情绪分析 情报检索
作者
Asad Abdi,Siti Mariyam Shamsuddin,Shafaatunnur Hasan,Md. Jalil Piran
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:109: 66-85 被引量:45
标识
DOI:10.1016/j.eswa.2018.05.010
摘要

Abstract Sentiment summarization is the process of automatically creating a compressed version of the opinionated information expressed in a text. This paper presents a machine learning-based approach to summarize user's opinion expressed in reviews using: (1) Sentiment knowledge to calculate a sentence sentiment score as one of the features for sentence-level classification. It integrates multiple strategies to tackle the following problems: sentiment shifter, the types of sentences and word coverage limit. (2) Word embedding model, a deep-learning-inspired method to understand meaning and semantic relationships among words and to extract a vector representation for each word. (3) Statistical and linguistic knowledge to determine salient sentences. The proposed method combines several types of features into a unified feature set to design a more accurate classification system (“True”: the extractive reference summary; “False”: otherwise). Thus, to achieve better performance scores, we carried out a performance study of four well-known feature selection techniques and seven of the most famous classifiers to select the most relevant set of features and find an efficient machine learning classifier, respectively. The proposed method is applied to three different datasets and the results show the integration of support vector machine-based classification method and Information Gain (IG) as a feature selection technique can significantly improve the performance and make the method comparable to other existing methods. Furthermore, our method that learns from this unified feature set can obtain better performance than one that learns from a feature subset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ray发布了新的文献求助10
刚刚
XXXTTT完成签到,获得积分10
刚刚
英俊的铭应助qwer采纳,获得10
1秒前
li发布了新的文献求助10
1秒前
1秒前
Psycho完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
隐形曼青应助ran采纳,获得10
2秒前
上官若男应助内向煎蛋采纳,获得10
3秒前
Akim应助T拐拐采纳,获得10
3秒前
4秒前
aodilee应助邱穗采纳,获得10
4秒前
王大雪发布了新的文献求助30
4秒前
5秒前
朱朱发布了新的文献求助10
6秒前
ktssly发布了新的文献求助10
6秒前
6秒前
7秒前
8秒前
9秒前
9秒前
Silence完成签到,获得积分0
9秒前
10秒前
Ava应助Jayee采纳,获得10
10秒前
lucky发布了新的文献求助20
10秒前
junjun发布了新的文献求助10
11秒前
李健应助Leon采纳,获得10
11秒前
11秒前
11秒前
11秒前
KON发布了新的文献求助10
11秒前
棉花完成签到 ,获得积分10
12秒前
12秒前
内向煎蛋完成签到,获得积分20
12秒前
锐意完成签到,获得积分10
12秒前
13秒前
俊俊发布了新的文献求助10
13秒前
LW发布了新的文献求助10
13秒前
马一凡完成签到,获得积分0
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728