Machine learning-based multi-documents sentiment-oriented summarization using linguistic treatment

自动汇总 计算机科学 自然语言处理 人工智能 情绪分析 情报检索
作者
Asad Abdi,Siti Mariyam Shamsuddin,Shafaatunnur Hasan,Md. Jalil Piran
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:109: 66-85 被引量:45
标识
DOI:10.1016/j.eswa.2018.05.010
摘要

Abstract Sentiment summarization is the process of automatically creating a compressed version of the opinionated information expressed in a text. This paper presents a machine learning-based approach to summarize user's opinion expressed in reviews using: (1) Sentiment knowledge to calculate a sentence sentiment score as one of the features for sentence-level classification. It integrates multiple strategies to tackle the following problems: sentiment shifter, the types of sentences and word coverage limit. (2) Word embedding model, a deep-learning-inspired method to understand meaning and semantic relationships among words and to extract a vector representation for each word. (3) Statistical and linguistic knowledge to determine salient sentences. The proposed method combines several types of features into a unified feature set to design a more accurate classification system (“True”: the extractive reference summary; “False”: otherwise). Thus, to achieve better performance scores, we carried out a performance study of four well-known feature selection techniques and seven of the most famous classifiers to select the most relevant set of features and find an efficient machine learning classifier, respectively. The proposed method is applied to three different datasets and the results show the integration of support vector machine-based classification method and Information Gain (IG) as a feature selection technique can significantly improve the performance and make the method comparable to other existing methods. Furthermore, our method that learns from this unified feature set can obtain better performance than one that learns from a feature subset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JJJ完成签到,获得积分10
1秒前
Signs完成签到 ,获得积分10
1秒前
愚人完成签到,获得积分10
1秒前
开心的芒果完成签到,获得积分10
2秒前
cancan发布了新的文献求助10
2秒前
研友_ngKyqn完成签到,获得积分10
2秒前
纯真以晴完成签到,获得积分10
2秒前
Owen应助甘特采纳,获得10
2秒前
ww发布了新的文献求助10
3秒前
couletian完成签到 ,获得积分10
3秒前
小小完成签到,获得积分10
4秒前
顾矜应助开朗紫采纳,获得10
4秒前
fff发布了新的文献求助10
5秒前
7秒前
7秒前
7秒前
哒哒完成签到,获得积分10
9秒前
田様应助666采纳,获得10
10秒前
彭于晏应助cancan采纳,获得10
10秒前
彩色的过客完成签到 ,获得积分10
11秒前
sh发布了新的文献求助10
11秒前
lii完成签到,获得积分10
11秒前
11秒前
Neuro_dan完成签到,获得积分0
13秒前
慕青应助甜美金毛采纳,获得10
13秒前
小青椒应助33采纳,获得30
13秒前
Mic应助fff采纳,获得10
13秒前
13秒前
14秒前
15秒前
EchooOO完成签到,获得积分10
15秒前
小蘑菇应助京港风采纳,获得10
16秒前
17秒前
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
Qianwy发布了新的文献求助10
18秒前
寒天帝完成签到,获得积分10
19秒前
L1完成签到,获得积分10
19秒前
甘特发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5424665
求助须知:如何正确求助?哪些是违规求助? 4539081
关于积分的说明 14164862
捐赠科研通 4456109
什么是DOI,文献DOI怎么找? 2444042
邀请新用户注册赠送积分活动 1435127
关于科研通互助平台的介绍 1412469