Machine learning-based multi-documents sentiment-oriented summarization using linguistic treatment

自动汇总 计算机科学 自然语言处理 人工智能 情绪分析 情报检索
作者
Asad Abdi,Siti Mariyam Shamsuddin,Shafaatunnur Hasan,Md. Jalil Piran
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:109: 66-85 被引量:45
标识
DOI:10.1016/j.eswa.2018.05.010
摘要

Abstract Sentiment summarization is the process of automatically creating a compressed version of the opinionated information expressed in a text. This paper presents a machine learning-based approach to summarize user's opinion expressed in reviews using: (1) Sentiment knowledge to calculate a sentence sentiment score as one of the features for sentence-level classification. It integrates multiple strategies to tackle the following problems: sentiment shifter, the types of sentences and word coverage limit. (2) Word embedding model, a deep-learning-inspired method to understand meaning and semantic relationships among words and to extract a vector representation for each word. (3) Statistical and linguistic knowledge to determine salient sentences. The proposed method combines several types of features into a unified feature set to design a more accurate classification system (“True”: the extractive reference summary; “False”: otherwise). Thus, to achieve better performance scores, we carried out a performance study of four well-known feature selection techniques and seven of the most famous classifiers to select the most relevant set of features and find an efficient machine learning classifier, respectively. The proposed method is applied to three different datasets and the results show the integration of support vector machine-based classification method and Information Gain (IG) as a feature selection technique can significantly improve the performance and make the method comparable to other existing methods. Furthermore, our method that learns from this unified feature set can obtain better performance than one that learns from a feature subset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SAF发布了新的文献求助10
刚刚
1秒前
善学以致用应助迟到虞姬采纳,获得10
1秒前
3秒前
3秒前
3秒前
daisy发布了新的文献求助10
4秒前
猕猴桃完成签到,获得积分10
4秒前
4秒前
圈圈完成签到 ,获得积分10
6秒前
研路漫漫发布了新的文献求助10
7秒前
又又妈妈完成签到,获得积分10
7秒前
勤劳糜完成签到,获得积分10
8秒前
科研鸟发布了新的文献求助10
8秒前
无花果应助ZZZ采纳,获得10
8秒前
明天见完成签到 ,获得积分10
9秒前
勤劳糜发布了新的文献求助10
12秒前
甜炸柿子鱼完成签到,获得积分10
16秒前
18秒前
albertchan完成签到,获得积分10
18秒前
明天见发布了新的文献求助10
22秒前
Ning00000完成签到 ,获得积分10
24秒前
渊思发布了新的文献求助10
25秒前
WHITE完成签到,获得积分10
25秒前
Newsweek发布了新的文献求助60
29秒前
诺奖就在前方完成签到,获得积分20
29秒前
29秒前
七一安完成签到 ,获得积分10
30秒前
充电宝应助lyn采纳,获得10
31秒前
揽月yue完成签到,获得积分10
31秒前
32秒前
33秒前
LiXingchen发布了新的文献求助10
34秒前
35秒前
35秒前
35秒前
研友_8DAv0L发布了新的文献求助10
36秒前
Behumble发布了新的文献求助10
37秒前
九敏完成签到,获得积分10
37秒前
lzd完成签到,获得积分10
38秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966147
求助须知:如何正确求助?哪些是违规求助? 3511567
关于积分的说明 11158912
捐赠科研通 3246169
什么是DOI,文献DOI怎么找? 1793309
邀请新用户注册赠送积分活动 874321
科研通“疑难数据库(出版商)”最低求助积分说明 804343