Machine learning-based multi-documents sentiment-oriented summarization using linguistic treatment

自动汇总 计算机科学 自然语言处理 人工智能 情绪分析 情报检索
作者
Asad Abdi,Siti Mariyam Shamsuddin,Shafaatunnur Hasan,Md. Jalil Piran
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:109: 66-85 被引量:45
标识
DOI:10.1016/j.eswa.2018.05.010
摘要

Abstract Sentiment summarization is the process of automatically creating a compressed version of the opinionated information expressed in a text. This paper presents a machine learning-based approach to summarize user's opinion expressed in reviews using: (1) Sentiment knowledge to calculate a sentence sentiment score as one of the features for sentence-level classification. It integrates multiple strategies to tackle the following problems: sentiment shifter, the types of sentences and word coverage limit. (2) Word embedding model, a deep-learning-inspired method to understand meaning and semantic relationships among words and to extract a vector representation for each word. (3) Statistical and linguistic knowledge to determine salient sentences. The proposed method combines several types of features into a unified feature set to design a more accurate classification system (“True”: the extractive reference summary; “False”: otherwise). Thus, to achieve better performance scores, we carried out a performance study of four well-known feature selection techniques and seven of the most famous classifiers to select the most relevant set of features and find an efficient machine learning classifier, respectively. The proposed method is applied to three different datasets and the results show the integration of support vector machine-based classification method and Information Gain (IG) as a feature selection technique can significantly improve the performance and make the method comparable to other existing methods. Furthermore, our method that learns from this unified feature set can obtain better performance than one that learns from a feature subset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白发布了新的文献求助10
1秒前
科研通AI6应助chamberlain采纳,获得10
1秒前
1秒前
2秒前
2秒前
djbj2022发布了新的文献求助10
3秒前
香蕉觅云应助Zola采纳,获得10
3秒前
甜美梦竹发布了新的文献求助10
3秒前
3秒前
4秒前
香蕉觅云应助Sera采纳,获得20
4秒前
4秒前
5秒前
lilei发布了新的文献求助10
5秒前
小白完成签到,获得积分10
5秒前
23333完成签到,获得积分10
6秒前
小马甲应助daypoi采纳,获得10
6秒前
片尾曲完成签到,获得积分10
6秒前
华山完成签到,获得积分10
8秒前
Jasper应助优秀元枫采纳,获得10
8秒前
踏雪寻梅完成签到,获得积分10
8秒前
彩色的万仇完成签到,获得积分10
8秒前
小坚果发布了新的文献求助10
9秒前
从容映易完成签到,获得积分10
9秒前
善学以致用应助duxh123采纳,获得10
9秒前
10秒前
丘比特应助健壮的芹菜采纳,获得10
10秒前
量子星尘发布了新的文献求助10
13秒前
小飞棍来nou完成签到,获得积分10
14秒前
15秒前
不安的黑猫完成签到,获得积分10
15秒前
17秒前
cc完成签到 ,获得积分10
17秒前
17秒前
18秒前
duxh123完成签到,获得积分10
19秒前
fan发布了新的文献求助10
19秒前
19秒前
19秒前
20秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5445925
求助须知:如何正确求助?哪些是违规求助? 4555131
关于积分的说明 14249821
捐赠科研通 4477403
什么是DOI,文献DOI怎么找? 2453266
邀请新用户注册赠送积分活动 1444039
关于科研通互助平台的介绍 1420008