Machine learning-based multi-documents sentiment-oriented summarization using linguistic treatment

自动汇总 计算机科学 自然语言处理 人工智能 情绪分析 情报检索
作者
Asad Abdi,Siti Mariyam Shamsuddin,Shafaatunnur Hasan,Md. Jalil Piran
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:109: 66-85 被引量:45
标识
DOI:10.1016/j.eswa.2018.05.010
摘要

Abstract Sentiment summarization is the process of automatically creating a compressed version of the opinionated information expressed in a text. This paper presents a machine learning-based approach to summarize user's opinion expressed in reviews using: (1) Sentiment knowledge to calculate a sentence sentiment score as one of the features for sentence-level classification. It integrates multiple strategies to tackle the following problems: sentiment shifter, the types of sentences and word coverage limit. (2) Word embedding model, a deep-learning-inspired method to understand meaning and semantic relationships among words and to extract a vector representation for each word. (3) Statistical and linguistic knowledge to determine salient sentences. The proposed method combines several types of features into a unified feature set to design a more accurate classification system (“True”: the extractive reference summary; “False”: otherwise). Thus, to achieve better performance scores, we carried out a performance study of four well-known feature selection techniques and seven of the most famous classifiers to select the most relevant set of features and find an efficient machine learning classifier, respectively. The proposed method is applied to three different datasets and the results show the integration of support vector machine-based classification method and Information Gain (IG) as a feature selection technique can significantly improve the performance and make the method comparable to other existing methods. Furthermore, our method that learns from this unified feature set can obtain better performance than one that learns from a feature subset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
一颗煤炭完成签到 ,获得积分10
3秒前
香蕉觅云应助北沐采纳,获得10
3秒前
小二郎应助生姜采纳,获得10
3秒前
4秒前
4秒前
小马甲应助服部平次采纳,获得10
5秒前
共享精神应助zz采纳,获得10
6秒前
Owen应助LX采纳,获得10
8秒前
微醺小王发布了新的文献求助10
8秒前
Eternity完成签到,获得积分10
9秒前
10秒前
Minh23发布了新的文献求助100
11秒前
007发布了新的文献求助10
11秒前
11秒前
11秒前
一蓑烟雨任平生完成签到,获得积分0
12秒前
身强力壮运气好完成签到,获得积分10
13秒前
大男发布了新的文献求助10
13秒前
ldld完成签到,获得积分10
14秒前
14秒前
lgm发布了新的文献求助30
15秒前
16秒前
Luoling完成签到 ,获得积分10
16秒前
幽默紫菜发布了新的文献求助10
17秒前
18秒前
冰河的羊发布了新的文献求助10
18秒前
0000完成签到,获得积分10
19秒前
19秒前
容布丁发布了新的文献求助10
19秒前
LX发布了新的文献求助10
22秒前
23秒前
23秒前
冰河的羊完成签到,获得积分10
24秒前
24秒前
老孟发布了新的文献求助50
26秒前
彭于晏应助昏睡的白昼采纳,获得10
26秒前
27秒前
27秒前
eurus发布了新的文献求助10
28秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141156
求助须知:如何正确求助?哪些是违规求助? 2792103
关于积分的说明 7801577
捐赠科研通 2448294
什么是DOI,文献DOI怎么找? 1302503
科研通“疑难数据库(出版商)”最低求助积分说明 626591
版权声明 601237