Controlling Redox Enzyme Orientation at Planar Electrodes

背景(考古学) 生物电化学 纳米技术 材料科学 氧化还原 电极 电化学 方向(向量空间) 电子转移 化学 有机化学 物理化学 古生物学 生物 冶金 数学 几何学
作者
Vivek Pratap Hitaishi,Romain Clément,Nicolas Bourassin,Marc Baaden,Anne de Poulpiquet,Sophie Sacquin‐Mora,Alexandre Ciaccafava,Élisabeth Lojou
出处
期刊:Catalysts [MDPI AG]
卷期号:8 (5): 192-192 被引量:78
标识
DOI:10.3390/catal8050192
摘要

Redox enzymes, which catalyze reactions involving electron transfers in living organisms, are very promising components of biotechnological devices, and can be envisioned for sensing applications as well as for energy conversion. In this context, one of the most significant challenges is to achieve efficient direct electron transfer by tunneling between enzymes and conductive surfaces. Based on various examples of bioelectrochemical studies described in the recent literature, this review discusses the issue of enzyme immobilization at planar electrode interfaces. The fundamental importance of controlling enzyme orientation, how to obtain such orientation, and how it can be verified experimentally or by modeling are the three main directions explored. Since redox enzymes are sizable proteins with anisotropic properties, achieving their functional immobilization requires a specific and controlled orientation on the electrode surface. All the factors influenced by this orientation are described, ranging from electronic conductivity to efficiency of substrate supply. The specificities of the enzymatic molecule, surface properties, and dipole moment, which in turn influence the orientation, are introduced. Various ways of ensuring functional immobilization through tuning of both the enzyme and the electrode surface are then described. Finally, the review deals with analytical techniques that have enabled characterization and quantification of successful achievement of the desired orientation. The rich contributions of electrochemistry, spectroscopy (especially infrared spectroscopy), modeling, and microscopy are featured, along with their limitations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ran发布了新的文献求助10
刚刚
刚刚
桐桐应助guoguo采纳,获得10
1秒前
小研大究完成签到,获得积分10
5秒前
啦啦啦啦完成签到,获得积分10
7秒前
云朵上的鱼完成签到,获得积分10
7秒前
帅气的马里奥完成签到 ,获得积分10
11秒前
Ran完成签到,获得积分10
13秒前
14秒前
gousheng666完成签到,获得积分20
18秒前
七月完成签到 ,获得积分10
19秒前
独木舟发布了新的文献求助10
19秒前
20秒前
cocolu应助guoguo采纳,获得10
20秒前
myp发布了新的文献求助10
24秒前
雨过天晴发布了新的文献求助10
25秒前
白子双发布了新的文献求助10
26秒前
酷炫的煎饼完成签到,获得积分20
28秒前
28秒前
xiaolang2004完成签到,获得积分10
28秒前
独特冰安发布了新的文献求助10
32秒前
33秒前
Zhouzhou应助搞怪柔采纳,获得10
34秒前
白子双完成签到,获得积分10
35秒前
Akim应助爱你不商量采纳,获得10
37秒前
酷炫的煎饼关注了科研通微信公众号
40秒前
hhh完成签到,获得积分10
41秒前
英姑应助sxl采纳,获得10
42秒前
45秒前
赘婿应助科研通管家采纳,获得10
46秒前
彭于晏应助科研通管家采纳,获得10
46秒前
丘比特应助科研通管家采纳,获得10
46秒前
46秒前
乐乐应助科研通管家采纳,获得10
47秒前
FashionBoy应助科研通管家采纳,获得10
47秒前
SciGPT应助科研通管家采纳,获得10
47秒前
完美世界应助科研通管家采纳,获得10
47秒前
在水一方应助科研通管家采纳,获得10
47秒前
47秒前
KitasanHN发布了新的文献求助10
49秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316145
求助须知:如何正确求助?哪些是违规求助? 2947769
关于积分的说明 8538441
捐赠科研通 2623855
什么是DOI,文献DOI怎么找? 1435568
科研通“疑难数据库(出版商)”最低求助积分说明 665632
邀请新用户注册赠送积分活动 651457