Brugada综合征
外显率
长QT综合征
内科学
电生理学
医学
疾病
钠通道
心脏病学
QT间期
生物
遗传学
化学
表型
有机化学
基因
钠
作者
Brett M. Kroncke,Andrew M. Glazer,Derek K. Smith,Jeffrey D. Blume,Dan M. Roden
出处
期刊:Circulation
[Ovid Technologies (Wolters Kluwer)]
日期:2018-05-01
卷期号:11 (5)
被引量:38
标识
DOI:10.1161/circgen.118.002095
摘要
Background: Accurately predicting the impact of rare nonsynonymous variants on disease risk is an important goal in precision medicine. Variants in the cardiac sodium channel SCN5A (protein Na V 1.5; voltage-dependent cardiac Na+ channel) are associated with multiple arrhythmia disorders, including Brugada syndrome and long QT syndrome. Rare SCN5A variants also occur in ≈1% of unaffected individuals. We hypothesized that in vitro electrophysiological functional parameters explain a statistically significant portion of the variability in disease penetrance. Methods: From a comprehensive literature review, we quantified the number of carriers presenting with and without disease for 1712 reported SCN5A variants. For 356 variants, data were also available for 5 Na V 1.5 electrophysiological parameters: peak current, late/persistent current, steady-state V1/2 of activation and inactivation, and recovery from inactivation. RESULTS: We found that peak and late current significantly associate with Brugada syndrome ( P <0.001; ρ=−0.44; Spearman rank test) and long QT syndrome disease penetrance ( P <0.001; ρ=0.37). Steady-state V1/2 activation and recovery from inactivation associate significantly with Brugada syndrome and long QT syndrome penetrance, respectively. Continuous estimates of disease penetrance align with the current American College of Medical Genetics classification paradigm. Conclusions: Na V 1.5 in vitro electrophysiological parameters are correlated with Brugada syndrome and long QT syndrome disease risk. Our data emphasize the value of in vitro electrophysiological characterization and incorporating counts of affected and unaffected carriers to aid variant classification. This quantitative analysis of the electrophysiological literature should aid the interpretation of Na V 1.5 variant electrophysiological abnormalities and help improve Na V 1.5 variant classification.
科研通智能强力驱动
Strongly Powered by AbleSci AI