清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Generalized Seismic Phase Detection with Deep Learning

震级(天文学) 计算机科学 地震学 安静的 波形 卷积神经网络 深度学习 噪音(视频) 集合(抽象数据类型) 航程(航空) 数据集 地震模拟 灵敏度(控制系统) 地质学 相(物质) 匹配(统计) 人工智能 物理 电信 工程类 雷达 量子力学 天文 航空航天工程 图像(数学) 程序设计语言 统计 数学 电子工程
作者
Zachary E. Ross,Men‐Andrin Meier,Egill Hauksson,Thomas H. Heaton
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:108 (5A): 2894-2901 被引量:302
标识
DOI:10.1785/0120180080
摘要

To optimally monitor earthquake-generating processes, seismologists have sought to lower detection sensitivities ever since instrumental seismic networks were started about a century ago. Recently, it has become possible to search continuous waveform archives for replicas of previously recorded events (template matching), which has led to at least an order of magnitude increase in the number of detected earthquakes and greatly sharpened our view of geological structures. Earthquake catalogs produced in this fashion, however, are heavily biased in that they are completely blind to events for which no templates are available, such as in previously quiet regions or for very large magnitude events. Here we show that with deep learning we can overcome such biases without sacrificing detection sensitivity. We trained a convolutional neural network (ConvNet) on the vast hand-labeled data archives of the Southern California Seismic Network to detect seismic body wave phases. We show that the ConvNet is extremely sensitive and robust in detecting phases, even when masked by high background noise, and when the ConvNet is applied to new data that is not represented in the training set (in particular, very large magnitude events). This generalized phase detection (GPD) framework will significantly improve earthquake monitoring and catalogs, which form the underlying basis for a wide range of basic and applied seismological research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
15秒前
15秒前
热情依白应助读书的时候采纳,获得10
18秒前
35秒前
灵巧延恶发布了新的文献求助10
46秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
灵巧延恶发布了新的文献求助10
1分钟前
1分钟前
dawnfrf完成签到,获得积分10
1分钟前
1分钟前
研友_VZG7GZ应助谢谢采纳,获得10
1分钟前
1分钟前
惠若烟发布了新的文献求助10
1分钟前
1分钟前
灵巧延恶发布了新的文献求助10
1分钟前
大模型应助读书的时候采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
要减肥的婷冉完成签到,获得积分10
2分钟前
2分钟前
完美世界应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
2分钟前
YYL完成签到 ,获得积分10
2分钟前
2分钟前
热情依白应助读书的时候采纳,获得10
2分钟前
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
wangping发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5688081
求助须知:如何正确求助?哪些是违规求助? 5063451
关于积分的说明 15193663
捐赠科研通 4846460
什么是DOI,文献DOI怎么找? 2598848
邀请新用户注册赠送积分活动 1550956
关于科研通互助平台的介绍 1509546