Generalized Seismic Phase Detection with Deep Learning

震级(天文学) 计算机科学 地震学 安静的 波形 卷积神经网络 深度学习 噪音(视频) 集合(抽象数据类型) 航程(航空) 数据集 地震模拟 灵敏度(控制系统) 地质学 相(物质) 匹配(统计) 人工智能 物理 电信 工程类 雷达 量子力学 天文 航空航天工程 图像(数学) 程序设计语言 统计 数学 电子工程
作者
Zachary E. Ross,Men‐Andrin Meier,Egill Hauksson,Thomas H. Heaton
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society]
卷期号:108 (5A): 2894-2901 被引量:302
标识
DOI:10.1785/0120180080
摘要

To optimally monitor earthquake-generating processes, seismologists have sought to lower detection sensitivities ever since instrumental seismic networks were started about a century ago. Recently, it has become possible to search continuous waveform archives for replicas of previously recorded events (template matching), which has led to at least an order of magnitude increase in the number of detected earthquakes and greatly sharpened our view of geological structures. Earthquake catalogs produced in this fashion, however, are heavily biased in that they are completely blind to events for which no templates are available, such as in previously quiet regions or for very large magnitude events. Here we show that with deep learning we can overcome such biases without sacrificing detection sensitivity. We trained a convolutional neural network (ConvNet) on the vast hand-labeled data archives of the Southern California Seismic Network to detect seismic body wave phases. We show that the ConvNet is extremely sensitive and robust in detecting phases, even when masked by high background noise, and when the ConvNet is applied to new data that is not represented in the training set (in particular, very large magnitude events). This generalized phase detection (GPD) framework will significantly improve earthquake monitoring and catalogs, which form the underlying basis for a wide range of basic and applied seismological research.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YY关注了科研通微信公众号
1秒前
1秒前
钮小童发布了新的文献求助10
1秒前
啦啦啦完成签到 ,获得积分10
2秒前
顾矜应助乖猫要努力采纳,获得10
3秒前
传奇3应助yw采纳,获得10
3秒前
刘轩雨发布了新的文献求助10
3秒前
CodeCraft应助咕咕咕采纳,获得10
3秒前
SciGPT应助Till采纳,获得10
4秒前
皇甫锾铬发布了新的文献求助10
4秒前
4秒前
5秒前
猪猪hero应助Levy采纳,获得10
5秒前
大模型应助Zoe采纳,获得30
5秒前
唐三发布了新的文献求助10
5秒前
LIUAiwei完成签到,获得积分10
5秒前
瓅芩发布了新的文献求助150
5秒前
风清扬应助supertkeb采纳,获得30
5秒前
英俊的铭应助Vanessa采纳,获得10
5秒前
充电宝应助小郭子采纳,获得10
6秒前
充电宝应助栗子采纳,获得10
6秒前
个性的饼干完成签到,获得积分10
6秒前
6秒前
rss完成签到,获得积分10
7秒前
桌子不齐完成签到,获得积分10
7秒前
7秒前
galioo3000发布了新的文献求助10
7秒前
xmy发布了新的文献求助10
8秒前
斯文败类应助wang采纳,获得10
9秒前
人文发布了新的文献求助100
9秒前
科研通AI6应助路人甲采纳,获得10
9秒前
9秒前
小七完成签到,获得积分10
9秒前
妞妞发布了新的文献求助10
10秒前
10秒前
Inspiring发布了新的文献求助10
11秒前
大个应助钮小童采纳,获得10
11秒前
11秒前
科研通AI2S应助Pendulium采纳,获得10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624821
求助须知:如何正确求助?哪些是违规求助? 4710692
关于积分的说明 14951877
捐赠科研通 4778750
什么是DOI,文献DOI怎么找? 2553437
邀请新用户注册赠送积分活动 1515386
关于科研通互助平台的介绍 1475721