Generalized Seismic Phase Detection with Deep Learning

震级(天文学) 计算机科学 地震学 安静的 波形 卷积神经网络 深度学习 噪音(视频) 集合(抽象数据类型) 航程(航空) 数据集 地震模拟 灵敏度(控制系统) 地质学 相(物质) 匹配(统计) 人工智能 物理 电信 工程类 统计 图像(数学) 航空航天工程 量子力学 数学 程序设计语言 电子工程 雷达 天文
作者
Zachary E. Ross,Men‐Andrin Meier,Egill Hauksson,Thomas H. Heaton
出处
期刊:Bulletin of the Seismological Society of America [Seismological Society of America]
卷期号:108 (5A): 2894-2901 被引量:302
标识
DOI:10.1785/0120180080
摘要

To optimally monitor earthquake-generating processes, seismologists have sought to lower detection sensitivities ever since instrumental seismic networks were started about a century ago. Recently, it has become possible to search continuous waveform archives for replicas of previously recorded events (template matching), which has led to at least an order of magnitude increase in the number of detected earthquakes and greatly sharpened our view of geological structures. Earthquake catalogs produced in this fashion, however, are heavily biased in that they are completely blind to events for which no templates are available, such as in previously quiet regions or for very large magnitude events. Here we show that with deep learning we can overcome such biases without sacrificing detection sensitivity. We trained a convolutional neural network (ConvNet) on the vast hand-labeled data archives of the Southern California Seismic Network to detect seismic body wave phases. We show that the ConvNet is extremely sensitive and robust in detecting phases, even when masked by high background noise, and when the ConvNet is applied to new data that is not represented in the training set (in particular, very large magnitude events). This generalized phase detection (GPD) framework will significantly improve earthquake monitoring and catalogs, which form the underlying basis for a wide range of basic and applied seismological research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助qqq采纳,获得10
3秒前
顾矜应助lihan采纳,获得10
3秒前
爆米花应助周em12_采纳,获得10
4秒前
5秒前
三物完成签到 ,获得积分10
6秒前
jolt发布了新的文献求助10
7秒前
9秒前
9秒前
10秒前
momo发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助30
11秒前
12秒前
13秒前
13秒前
善学以致用应助笃定采纳,获得30
14秒前
SS发布了新的文献求助10
16秒前
16秒前
ZZZ发布了新的文献求助10
16秒前
Justtry发布了新的文献求助20
18秒前
18秒前
顾矜应助momo采纳,获得10
19秒前
19秒前
hnlgdx发布了新的文献求助20
19秒前
21秒前
重要冷之完成签到,获得积分20
21秒前
21秒前
24秒前
VV完成签到,获得积分10
24秒前
ccalvintan发布了新的文献求助10
25秒前
蛋挞发布了新的文献求助10
26秒前
小马甲应助SS采纳,获得10
29秒前
XX完成签到,获得积分10
32秒前
33秒前
34秒前
慕青应助诚心的扬采纳,获得10
38秒前
zlttt发布了新的文献求助10
39秒前
科研通AI5应助维尼采纳,获得20
39秒前
LIO完成签到,获得积分10
40秒前
42秒前
愉快的新波完成签到,获得积分10
43秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989297
求助须知:如何正确求助?哪些是违规求助? 3531418
关于积分的说明 11253893
捐赠科研通 3270097
什么是DOI,文献DOI怎么找? 1804884
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809158