CNT/g-C3 N4 photocatalysts with enhanced hydrogen evolution ability for water splitting based on a noncovalent interaction

光催化 分解水 材料科学 制氢 光电效应 石墨氮化碳 氮化碳 碳纳米管 化学工程 催化作用 量子产额 纳米技术 光化学 化学 光电子学 有机化学 光学 工程类 荧光 物理
作者
Limin Song,Xingsi Kang,Shujuan Zhang
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:42 (4): 1649-1656 被引量:43
标识
DOI:10.1002/er.3960
摘要

Graphite carbon nitride (g-C3N4) as a novel photocatalyst has attracted growing attention, but its photocatalytic efficiency should be further improved. Based on the large work function and fast electron conductivity of carbon nanotubes (CNTs), here CNT/g-C3N4 photocatalysts with improved H2 evolution ability and stable water splitting ability were synthesized. The improvement was attributed to the synergistic effect between CNTs and g-C3N4. As for the mechanisms, CNTs strongly attracted photoelectrons and, because of excellent conductibility, rapidly transferred photoelectrons from the catalyst interface. Thereby, the photoelectron migration rate and the photogenerated charge separation and the use efficiency of photoelectrons in g-C3N4 were improved, which largely enhanced the hydrogen production ability. Moreover, the addition of CNTs improved the service life and stability of g-C3N4-based photocatalytic H2 production. After 10 hours of visible light irradiation, the maximum H2 yield from the 12-mg/L CNT/g-C3N4 (CG12) was 138.7 times larger than that of g-C3N4 (6548.4 vs 47.2 μmol/g), and the H2 evolution rate was 138.7 times that of g-C3N4 (654.8 vs 4.72 μmol/g/h). After 50 hours, the apparent quantum efficiency of CG12 was up to 37.9%, indicating that the addition of CNTs improved the photocatalytic splitting and stability of g-C3N4. The mechanism of photocatalytic hydrogen production and the roles of CNTs in improving water splitting were discussed through characterization and activity experiments. It was found that the addition of CNTs accelerated the migration, separation, and utilization of photoelectrons and thereby significantly enhanced the photocatalytic performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
夏熠完成签到,获得积分10
1秒前
Cassie完成签到,获得积分10
1秒前
Singhi完成签到 ,获得积分10
1秒前
昵称完成签到,获得积分10
1秒前
冷傲的自行车完成签到,获得积分20
2秒前
小二郎应助小何采纳,获得10
2秒前
3秒前
chen发布了新的文献求助10
3秒前
顾矜应助对对碰采纳,获得10
4秒前
鱿鱼发布了新的文献求助10
4秒前
夜未央发布了新的文献求助10
5秒前
5秒前
ww关注了科研通微信公众号
5秒前
失眠的耳机完成签到,获得积分10
6秒前
7秒前
7秒前
syy080837发布了新的文献求助10
7秒前
Akim应助iwonder采纳,获得10
7秒前
7秒前
7秒前
所所应助冷傲的自行车采纳,获得30
8秒前
Lee发布了新的文献求助10
9秒前
yuliuism应助Dasph7采纳,获得20
9秒前
9秒前
倒逆之蝶应助科研通管家采纳,获得10
10秒前
倒逆之蝶应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
Owen应助科研通管家采纳,获得10
10秒前
zgrmws应助科研通管家采纳,获得10
10秒前
tcf应助科研通管家采纳,获得10
10秒前
紫气东来应助科研通管家采纳,获得10
10秒前
所所应助科研通管家采纳,获得10
10秒前
丘比特应助科研通管家采纳,获得10
10秒前
充电宝应助科研通管家采纳,获得10
10秒前
PPP完成签到,获得积分0
10秒前
紫气东来应助科研通管家采纳,获得10
10秒前
大个应助科研通管家采纳,获得10
10秒前
zgrmws应助科研通管家采纳,获得10
10秒前
小蘑菇应助科研通管家采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5660573
求助须知:如何正确求助?哪些是违规求助? 4834676
关于积分的说明 15091117
捐赠科研通 4819141
什么是DOI,文献DOI怎么找? 2579102
邀请新用户注册赠送积分活动 1533630
关于科研通互助平台的介绍 1492396