CNT/g-C3 N4 photocatalysts with enhanced hydrogen evolution ability for water splitting based on a noncovalent interaction

光催化 分解水 材料科学 制氢 光电效应 石墨氮化碳 氮化碳 碳纳米管 化学工程 催化作用 量子产额 纳米技术 光化学 化学 光电子学 有机化学 光学 工程类 荧光 物理
作者
Limin Song,Xingsi Kang,Shujuan Zhang
出处
期刊:International Journal of Energy Research [Wiley]
卷期号:42 (4): 1649-1656 被引量:43
标识
DOI:10.1002/er.3960
摘要

Graphite carbon nitride (g-C3N4) as a novel photocatalyst has attracted growing attention, but its photocatalytic efficiency should be further improved. Based on the large work function and fast electron conductivity of carbon nanotubes (CNTs), here CNT/g-C3N4 photocatalysts with improved H2 evolution ability and stable water splitting ability were synthesized. The improvement was attributed to the synergistic effect between CNTs and g-C3N4. As for the mechanisms, CNTs strongly attracted photoelectrons and, because of excellent conductibility, rapidly transferred photoelectrons from the catalyst interface. Thereby, the photoelectron migration rate and the photogenerated charge separation and the use efficiency of photoelectrons in g-C3N4 were improved, which largely enhanced the hydrogen production ability. Moreover, the addition of CNTs improved the service life and stability of g-C3N4-based photocatalytic H2 production. After 10 hours of visible light irradiation, the maximum H2 yield from the 12-mg/L CNT/g-C3N4 (CG12) was 138.7 times larger than that of g-C3N4 (6548.4 vs 47.2 μmol/g), and the H2 evolution rate was 138.7 times that of g-C3N4 (654.8 vs 4.72 μmol/g/h). After 50 hours, the apparent quantum efficiency of CG12 was up to 37.9%, indicating that the addition of CNTs improved the photocatalytic splitting and stability of g-C3N4. The mechanism of photocatalytic hydrogen production and the roles of CNTs in improving water splitting were discussed through characterization and activity experiments. It was found that the addition of CNTs accelerated the migration, separation, and utilization of photoelectrons and thereby significantly enhanced the photocatalytic performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Mininine完成签到,获得积分10
刚刚
皮代谷完成签到,获得积分10
刚刚
1秒前
1秒前
大气映天发布了新的文献求助10
1秒前
1秒前
2秒前
yu完成签到,获得积分10
2秒前
2秒前
动听的柚子完成签到,获得积分10
2秒前
Kedr完成签到,获得积分10
3秒前
zz完成签到,获得积分10
4秒前
Akim应助含蓄觅山采纳,获得10
4秒前
luokm完成签到,获得积分10
4秒前
refd发布了新的文献求助10
4秒前
谨慎的大门完成签到 ,获得积分10
5秒前
奖品肉麻膏耶完成签到 ,获得积分10
5秒前
5秒前
彭于晏应助lwq采纳,获得10
5秒前
无尘泪发布了新的文献求助20
5秒前
852应助半个小屌丝采纳,获得10
5秒前
5秒前
宁戎完成签到,获得积分10
6秒前
asdasd发布了新的文献求助10
6秒前
学术小白发布了新的文献求助10
7秒前
7秒前
bc应助冷静的冷珍采纳,获得30
7秒前
chenchen__发布了新的文献求助10
7秒前
7秒前
求求了完成签到,获得积分10
7秒前
Ava应助大吃一筐馒头采纳,获得10
8秒前
8秒前
宁戎发布了新的文献求助10
8秒前
az发布了新的文献求助10
10秒前
一只猪发布了新的文献求助10
10秒前
虚心焦发布了新的文献求助10
11秒前
12秒前
he发布了新的文献求助10
12秒前
777发布了新的文献求助30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608628
求助须知:如何正确求助?哪些是违规求助? 4693398
关于积分的说明 14877890
捐赠科研通 4718180
什么是DOI,文献DOI怎么找? 2544398
邀请新用户注册赠送积分活动 1509479
关于科研通互助平台的介绍 1472844