A novel artificial bee colony algorithm with local and global information interaction

计算机科学 利用 人工蜂群算法 人工智能 局部搜索(优化) 趋同(经济学) 人口 数学优化 范围(计算机科学) 蜜蜂算法 机器学习 元启发式 数学 社会学 人口学 经济 程序设计语言 经济增长 计算机安全
作者
Qiuzhen Lin,Miaomiao Zhu,Genghui Li,Wenjun Wang,Laizhong Cui,Jianyong Chen,Jian Lü
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:62: 702-735 被引量:55
标识
DOI:10.1016/j.asoc.2017.11.012
摘要

The artificial bee colony algorithm (ABC) is a new stochastic and population-based optimization method, which has been attracting a great deal of attention, due to its simple structure, easy implementation and outstanding performance. However, it also suffers from slow convergence like other evolutionary algorithms. In order to address this concerning issue, in this paper, we propose a novel artificial bee colony algorithm with local and global information interaction, called ABCLGII. In employed bee phase, each employed bee is designed to learn from the best individual among its neighbors or in a local visible scope. By this way, the search of employed bees is no longer independent and blind, but is cooperative and directional, such that a local information interaction mechanism is conducted between employed bees. In onlooker bee phase, only a part of superior food sources have chance to attract onlooker bees to exploit in their vicinity. Moreover, two novel search equations are proposed for onlooker bees to generate candidate food sources. Specifically, one exploits the useful information of some good solutions, while the other combines the valuable information of the current best solution and some good solutions simultaneously. An adaptive selection mechanism is accordingly designed for onlooker bees to choose a proper search equation for producing candidate food sources. In this way, a global information interaction mechanism is employed for onlooker bees. In order to evaluate the performance of ABCLGII, we compare ABCLGII with the original ABC and other outstanding ABC variants on 52 frequently used test functions. The experimental results show that ABCLGII is better than or at least competitive to the state-of-the-art ABC variants in terms of solution quality, robustness and convergence speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
干雅柏发布了新的文献求助10
1秒前
大方思菱关注了科研通微信公众号
2秒前
在水一方应助兔兔采纳,获得10
2秒前
2秒前
CC努力搞科研完成签到 ,获得积分10
3秒前
Singularity举报单纯的不乐求助涉嫌违规
3秒前
4秒前
4秒前
Owen应助会飞的野马采纳,获得10
5秒前
心肺复苏~发布了新的文献求助10
5秒前
筱曼发布了新的文献求助30
5秒前
小二郎应助乐乐洛洛采纳,获得10
6秒前
小心发布了新的文献求助50
7秒前
霸气雪兰发布了新的文献求助10
7秒前
7秒前
陆陆发布了新的文献求助10
7秒前
满意的初南完成签到,获得积分10
8秒前
8秒前
隐形曼青应助subtle5114采纳,获得10
8秒前
10秒前
10秒前
科研321应助晓然采纳,获得10
10秒前
科研通AI5应助晓然采纳,获得10
10秒前
天天快乐应助干雅柏采纳,获得10
10秒前
10秒前
共享精神应助再夕予采纳,获得10
10秒前
10秒前
10秒前
大头发布了新的文献求助10
11秒前
英俊的铭应助肆水荡漾采纳,获得10
11秒前
cherish完成签到,获得积分10
11秒前
XIE完成签到,获得积分20
12秒前
orixero应助小余同学采纳,获得10
13秒前
13秒前
14秒前
XM发布了新的文献求助10
14秒前
14秒前
14秒前
科研通AI5应助Gilana采纳,获得30
15秒前
高分求助中
All the Birds of the World 3000
Weirder than Sci-fi: Speculative Practice in Art and Finance 960
IZELTABART TAPATANSINE 500
Introduction to Comparative Public Administration: Administrative Systems and Reforms in Europe: Second Edition 2nd Edition 300
Spontaneous closure of a dural arteriovenous malformation 300
GNSS Applications in Earth and Space Observations 300
Not Equal : Towards an International Law of Finance 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3723682
求助须知:如何正确求助?哪些是违规求助? 3269325
关于积分的说明 9959551
捐赠科研通 2983706
什么是DOI,文献DOI怎么找? 1636840
邀请新用户注册赠送积分活动 777277
科研通“疑难数据库(出版商)”最低求助积分说明 746840