Optimal Matching of Bit and Reamer for Increased Reliability of Hole-Opening BHAs

铰刀 扭矩 可靠性(半导体) 控制理论(社会学) 计算机科学 结构工程 数学 工程类 机械工程 人工智能 物理 量子力学 功率(物理) 控制(管理) 热力学
作者
Armin Kueck,Mohamed Ichaoui,Christian Herbig,Andreas Hohl,Georg‐Peter Ostermeyer,Hanno Reckmann
标识
DOI:10.2118/188709-ms
摘要

Abstract Mechanical loads in hole-opening BHAs result in tool failures and generate maintenance costs and non-productive time. This paper presents a method to increase the reliability of hole-opening BHAs by optimally matching the bit and reamer. The weight and torque distribution between the bit and reamer is predicted using a stationary load model. New quality load curves facilitate the evaluation of bit-reamer combinations in a user-friendly way. The model and the load curves are validated on a unique set of field data, enabling determination of the model's accuracy. The model is based on the mechanical specific energies at the bit and at the reamer. The model assumes the RPM and rate of penetration to be constant, the BHA is rigid in the axial and torsional directions and the lateral movement is blocked. Quality load curves are deduced that depict the load distribution in one plot. The model is validated on a unique data set that includes several high-precision measuring tools placed along the drill string. The unconfined compressive strength over depth that usually is not measured in other runs is available. The data set enables precise determination of the axial forces and torques directly at the bit and at the reamer. The observed mechanical specific energy, drilling efficiency, and aggressiveness of both cutting tools over depth are measured. The model and the quality curves are used to predict the weight and torque distribution depending on the formation type at the bit and at the reamer. A comparison of the prediction to the measured data shows that the weight distribution is predicted with an error of 2% and the torque distribution is predicted with an error of 10.8%. The model accuracy is determined by introducing uncertain parameters into the model. The load predictions are again compared to the measured data. Using the coarse parameter set, the mean prediction error increases to 13%, which is very good, considering the simplifying assumptions of the model. The validated model and the new quality curves enable an optimal choice of bit and reamers. The presented approach is fast and user-friendly and perfect for an application in advisory software in the well-planning phase. The increased reliability due to less mechanical overloads leads to reduced maintenance costs and less non-productive time of the reamer BHAs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
陈木木完成签到,获得积分10
刚刚
刘旭阳发布了新的文献求助10
刚刚
刚刚
hhhhhhh发布了新的文献求助10
刚刚
长情洙完成签到,获得积分10
1秒前
Lilac完成签到 ,获得积分10
1秒前
1秒前
1秒前
MissXia完成签到,获得积分10
1秒前
NUNKI完成签到,获得积分10
1秒前
迅速星星完成签到,获得积分10
1秒前
科研废物发布了新的文献求助10
2秒前
ltc完成签到,获得积分10
2秒前
科研通AI5应助诚c采纳,获得10
2秒前
Mrrr发布了新的文献求助10
2秒前
sganthem完成签到,获得积分10
2秒前
3秒前
哦吼完成签到,获得积分10
3秒前
3秒前
lm发布了新的文献求助10
4秒前
月白发布了新的文献求助10
4秒前
π.完成签到,获得积分10
5秒前
5秒前
李健应助长情洙采纳,获得10
5秒前
5秒前
科研小白完成签到,获得积分10
6秒前
6秒前
RandyD发布了新的文献求助10
6秒前
6秒前
最最最发布了新的文献求助10
6秒前
7秒前
π.发布了新的文献求助10
7秒前
8秒前
yangyangyang发布了新的文献求助10
8秒前
siccy完成签到 ,获得积分10
8秒前
图南关注了科研通微信公众号
9秒前
我是老大应助Mrrr采纳,获得10
9秒前
ZTT发布了新的文献求助10
9秒前
调皮的凝旋完成签到,获得积分10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759