High-temperature crystallization of nanocrystals into three-dimensional superlattices

纳米晶 超晶格 结晶 材料科学 纳米技术 化学物理 化学工程 化学 光电子学 工程类
作者
Liheng Wu,Joshua J. Willis,Ian Salmon McKay,Benjamin T. Diroll,Jian Qin,Matteo Cargnello,Christopher J. Tassone
出处
期刊:Nature [Springer Nature]
卷期号:548 (7666): 197-201 被引量:119
标识
DOI:10.1038/nature23308
摘要

Crystallization of colloidal nanocrystals into superlattices represents a practical bottom-up process with which to create ordered metamaterials with emergent functionalities. With precise control over the size, shape and composition of individual nanocrystals, various single- and multi-component nanocrystal superlattices have been produced, the lattice structures and chemical compositions of which can be accurately engineered. Nanocrystal superlattices are typically prepared by carefully controlling the assembly process through solvent evaporation or destabilization or through DNA-guided crystallization. Slow solvent evaporation or cooling of nanocrystal solutions (over hours or days) is the key element for successful crystallization processes. Here we report the rapid growth (seconds) of micrometre-sized, face-centred-cubic, three-dimensional nanocrystal superlattices during colloidal synthesis at high temperatures (more than 230 degrees Celsius). Using in situ small-angle X-ray scattering, we observe continuous growth of individual nanocrystals within the lattices, which results in simultaneous lattice expansion and fine nanocrystal size control due to the superlattice templates. Thermodynamic models demonstrate that balanced attractive and repulsive interparticle interactions dictated by the ligand coverage on nanocrystal surfaces and nanocrystal core size are responsible for the crystallization process. The interparticle interactions can also be controlled to form different superlattice structures, such as hexagonal close-packed lattices. The rational assembly of various nanocrystal systems into novel materials is thus facilitated for both fundamental research and for practical applications in the fields of magnetics, electronics and catalysis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
清凉茶完成签到,获得积分10
1秒前
睡一天懒觉完成签到,获得积分10
1秒前
欧阳静芙完成签到,获得积分10
2秒前
4秒前
Kervaff完成签到,获得积分10
4秒前
wudi19887发布了新的文献求助10
4秒前
6秒前
量子完成签到,获得积分20
6秒前
研究新人发布了新的文献求助10
8秒前
8秒前
自然完成签到,获得积分10
8秒前
小王完成签到 ,获得积分10
8秒前
雪流星完成签到 ,获得积分10
9秒前
panda发布了新的文献求助10
10秒前
11秒前
一点点完成签到 ,获得积分10
12秒前
12秒前
萧水白应助nini采纳,获得10
12秒前
科研通AI2S应助缥缈傥采纳,获得10
13秒前
13秒前
友好的小鸭子完成签到 ,获得积分10
14秒前
14秒前
研究新人完成签到,获得积分10
15秒前
小蘑菇应助wudi19887采纳,获得10
16秒前
陈嘟嘟发布了新的文献求助10
16秒前
思源应助团子采纳,获得10
17秒前
shenglongmax发布了新的文献求助10
17秒前
卡列林发布了新的文献求助10
18秒前
朱华彪发布了新的文献求助10
18秒前
babybluebabe发布了新的文献求助10
19秒前
19秒前
小星云完成签到,获得积分20
19秒前
Kervaff发布了新的文献求助50
21秒前
小姚在忙完成签到,获得积分10
24秒前
SciGPT应助王冠军采纳,获得10
26秒前
小杜完成签到,获得积分10
27秒前
27秒前
30秒前
yar应助科研通管家采纳,获得10
31秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304346
求助须知:如何正确求助?哪些是违规求助? 2938329
关于积分的说明 8488322
捐赠科研通 2612813
什么是DOI,文献DOI怎么找? 1426885
科研通“疑难数据库(出版商)”最低求助积分说明 662879
邀请新用户注册赠送积分活动 647374