Deep-state-controlled minority-carrier lifetime in n-type gallium phosphide

材料科学 磷化铟 兴奋剂
作者
B. Hamilton,А. R. Peaker,D.R. Wight
出处
期刊:Journal of Applied Physics [American Institute of Physics]
卷期号:50 (10): 6373-6385 被引量:73
标识
DOI:10.1063/1.325728
摘要

Details of a method for the characterization of deep levels with large capture cross sections for minority carriers are presented. This technique has been used to investigate centers in gallium phosphide. Two defects at EV+0.75 eV and EV+0.95 eV are described in detail. Evidence is presented that shows that the shallower of these defects can control the minority-carrier lifetime in n-type gallium phosphide and in fact is the dominant recombination center in most epitaxial layers of this material. The technique uses capacitance as a measure of the charge state of the deep levels in the depletion region of a Schottky barrier. This charge state is perturbed by the capture and subsequent thermal emission of minority carriers. The carriers are generated by irradiation of the semiconductor with low-intensity light at a wavelength near the absorption edge. Minority carriers generated in the neutral material within about a diffusion length of the barrier region are extracted by the depletion field. Majority carriers are excluded by the field and consequently the current through the barrier is due predominantly to minority carriers. These are captured by the defects, the fastest capture being into the levels with the largest capture cross sections. As a result, the technique can in many cases be used selectively to detect the most important recombination centers in a semiconductor and to determine their capture cross sections, concentrations, and energy depths.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
William鉴哲完成签到,获得积分10
刚刚
神奇科研圆完成签到,获得积分10
刚刚
刚刚
biomds完成签到,获得积分10
刚刚
刚刚
1秒前
乐乐应助huifang采纳,获得10
1秒前
范范发布了新的文献求助10
2秒前
倩迷谜完成签到,获得积分0
3秒前
3秒前
酷酷的紫南完成签到 ,获得积分10
4秒前
迷人凡旋完成签到,获得积分20
4秒前
JamesPei应助大李包采纳,获得10
4秒前
4秒前
天涯完成签到 ,获得积分10
5秒前
shr完成签到,获得积分10
5秒前
落后以旋完成签到,获得积分10
5秒前
小二郎应助缚大哥采纳,获得10
5秒前
充电宝应助青木蓝采纳,获得10
6秒前
云中渊发布了新的文献求助10
6秒前
冷静的毛豆完成签到,获得积分10
6秒前
涵Allen完成签到 ,获得积分10
6秒前
思源应助wzxxxx采纳,获得10
6秒前
隐形曼青应助shelly0621采纳,获得10
7秒前
无敌鱼发布了新的文献求助10
7秒前
8秒前
meimei完成签到,获得积分10
8秒前
朴实的薯片完成签到,获得积分10
9秒前
way完成签到,获得积分10
10秒前
脑洞疼应助Chan0501采纳,获得10
11秒前
fancy完成签到 ,获得积分10
11秒前
Maglev发布了新的文献求助10
12秒前
12秒前
含糊的代丝完成签到 ,获得积分10
12秒前
12秒前
13秒前
小九发布了新的文献求助20
13秒前
zhui发布了新的文献求助10
14秒前
通达完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794