吸附
物理吸附
体积热力学
解吸
化学工程
材料科学
大气温度范围
胺气处理
化学
有机化学
热力学
物理
工程类
作者
Xinlong Yan,Lei Zhang,Ying Zhang,Guidong Yang,Zifeng Yan
摘要
Several SBA-15 silica materials with different pore structures were synthesized and functionalized with poly(ethyleneimine) (PEI). The as-prepared materials were characterized by XRD, SEM, TG, FT-IR, and N2 physisorption techniques followed by testing for CO2 capture using a N2 stream containing 15.1 v/v% CO2 in the temperature range of 30−75 °C. The results showed that the CO2 adsorption capacity linearly increased with the total pore volume of the SBA-15 phases in the tested temperature range (R2 > 0.94). Temperature also showed a strong influence on CO2 adsorption capacity. SBA-15 material with the largest pore volume (1.14 cm3 g−1) exhibited the largest CO2 adsorption capacity (105.2 mg g−1 adsorbent) with 15.1 v/v% CO2 in N2 at 75 °C and atmospheric pressure. Pore size was found not to be the main factor influencing the CO2 adsorption capacity of these PEI-modified SBA-15 materials. Adsorption−desorption cycles (12) revealed that the adsorbents with PEI loaded inside the pore channels were found to be quite stable, as they retained their CO2 adsorption capacity with many cycles.
科研通智能强力驱动
Strongly Powered by AbleSci AI