脂质体
体内分布
化学
药物输送
螯合作用
血液循环
药理学
体外
生物化学
医学
有机化学
传统医学
作者
Zhiliang Cheng,Ajlan Al Zaki,James Z. Hui,Andrew Tsourkas
摘要
Liposomes are intensively being developed for biomedical applications including drug and gene delivery. However, targeted liposomal delivery in cancer treatment is a very complicated multistep process. Unfavorable liposome biodistribution upon intravenous administration and membrane destabilization in blood circulation could result in only a very small fraction of cargo reaching the tumors. It would therefore be desirable to develop new quantitative strategies to track liposomal delivery systems to improve the therapeutic index and decrease systemic toxicity. Here, we developed a simple and nonradiative method to quantify the tumor uptake of targeted and nontargeted control liposomes as well as their encapsulated contents simultaneously. Specifically, four different chelated lanthanide metals were encapsulated or surface-conjugated onto tumor-targeted and nontargeted liposomes, respectively. The two liposome formulations were then injected into tumor-bearing mice simultaneously, and their tumor delivery was determined quantitatively via inductively coupled plasma mass spectroscopy (ICPMS), allowing for direct comparisons. Tumor uptake of the liposomes themselves and their encapsulated contents was consistent with targeted and nontargeted liposome formulations that were injected individually.
科研通智能强力驱动
Strongly Powered by AbleSci AI