重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Novel Predictors of Intravenous Immunoglobulin Resistance in Chinese Children with Kawasaki Disease

医学 川崎病 接收机工作特性 逻辑回归 计分系统 内科学 曲线下面积 动脉
作者
Peipei Fu,Zhong-Dong Du,Yuesong Pan
出处
期刊:Pediatric Infectious Disease Journal [Ovid Technologies (Wolters Kluwer)]
卷期号:32 (8): e319-e323 被引量:64
标识
DOI:10.1097/inf.0b013e31828e887f
摘要

The purpose of this study was to develop a predictive scoring system to identify intravenous immunoglobulin resistance in children with Kawasaki disease, to implement additional therapies early in the course of their illness and prevent coronary artery lesions.We performed a retrospective review of children with Kawasaki disease treated within 10 days of fever onset. To identify independent predictors of intravenous immunoglobulin resistance, multivariable logistic regression models were constructed using variables selected by univariable analysis. The independent predictors were combined into a new scoring system and compared with 2 existing systems. The discriminatory capacity of the scoring system was assessed using the area under the receiver operating characteristic curves.By logistic regression analysis, polymorphous exanthema, changes around the anus, days of illness at initial treatment, percentage of neutrophils, C-reactive protein levels, albumin levels, and total bilirubin proved to be independent predictors of intravenous immunoglobulin resistance. The new scoring system gave an area under the receiver operating characteristic curve of 0.672. In this scoring system, 2 risk strata were identified: low risk, with scores of 0-3, and high risk, with scores of ≥4. The sensitivity was 54.1% and the specificity was 71.2%.The new scoring system had a higher specificity and sensitivity for Chinese children, compared with the Kobayashi scoring system and the Egami scoring system, but, unfortunately, the new scoring system was not good enough to be widely used because of its low sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
宋浩奇完成签到 ,获得积分10
2秒前
浮游应助hxz采纳,获得50
2秒前
2秒前
毅毅子发布了新的文献求助10
3秒前
泰山球迷发布了新的文献求助10
3秒前
Wn发布了新的文献求助200
3秒前
CR7完成签到,获得积分0
4秒前
airtermis发布了新的文献求助10
4秒前
善学以致用应助缓慢冷风采纳,获得10
4秒前
w2完成签到,获得积分10
4秒前
Jolin完成签到,获得积分10
4秒前
lsn发布了新的文献求助10
5秒前
5秒前
123发布了新的文献求助30
5秒前
5秒前
糊涂的中恶完成签到,获得积分10
5秒前
哭泣的金鱼完成签到,获得积分10
5秒前
wangyamei发布了新的文献求助10
6秒前
6秒前
传奇3应助Ruhe采纳,获得10
6秒前
隐形曼青应助追1采纳,获得10
6秒前
6秒前
充电宝应助Gaojin锦采纳,获得10
6秒前
6秒前
7秒前
陈好完成签到,获得积分10
8秒前
anlifei发布了新的文献求助10
8秒前
8秒前
温酽发布了新的文献求助10
9秒前
飞翔的霸天哥应助穆穆穆采纳,获得30
10秒前
zhuchenglu发布了新的文献求助10
10秒前
寡核苷酸小白完成签到,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
于建国完成签到,获得积分10
11秒前
坚定的依琴完成签到,获得积分10
11秒前
典雅擎苍完成签到,获得积分20
11秒前
俭朴新瑶发布了新的文献求助10
12秒前
12秒前
风吹麦田应助陈好采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466870
求助须知:如何正确求助?哪些是违规求助? 4570586
关于积分的说明 14326244
捐赠科研通 4497151
什么是DOI,文献DOI怎么找? 2463752
邀请新用户注册赠送积分活动 1452682
关于科研通互助平台的介绍 1427605