Novel Predictors of Intravenous Immunoglobulin Resistance in Chinese Children with Kawasaki Disease

医学 川崎病 接收机工作特性 逻辑回归 计分系统 内科学 曲线下面积 动脉
作者
Peipei Fu,Zhong-Dong Du,Yuesong Pan
出处
期刊:Pediatric Infectious Disease Journal [Lippincott Williams & Wilkins]
卷期号:32 (8): e319-e323 被引量:64
标识
DOI:10.1097/inf.0b013e31828e887f
摘要

The purpose of this study was to develop a predictive scoring system to identify intravenous immunoglobulin resistance in children with Kawasaki disease, to implement additional therapies early in the course of their illness and prevent coronary artery lesions.We performed a retrospective review of children with Kawasaki disease treated within 10 days of fever onset. To identify independent predictors of intravenous immunoglobulin resistance, multivariable logistic regression models were constructed using variables selected by univariable analysis. The independent predictors were combined into a new scoring system and compared with 2 existing systems. The discriminatory capacity of the scoring system was assessed using the area under the receiver operating characteristic curves.By logistic regression analysis, polymorphous exanthema, changes around the anus, days of illness at initial treatment, percentage of neutrophils, C-reactive protein levels, albumin levels, and total bilirubin proved to be independent predictors of intravenous immunoglobulin resistance. The new scoring system gave an area under the receiver operating characteristic curve of 0.672. In this scoring system, 2 risk strata were identified: low risk, with scores of 0-3, and high risk, with scores of ≥4. The sensitivity was 54.1% and the specificity was 71.2%.The new scoring system had a higher specificity and sensitivity for Chinese children, compared with the Kobayashi scoring system and the Egami scoring system, but, unfortunately, the new scoring system was not good enough to be widely used because of its low sensitivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
polite完成签到,获得积分10
1秒前
科研通AI2S应助提拉米草采纳,获得30
1秒前
愉快凌晴完成签到,获得积分10
2秒前
自然风完成签到 ,获得积分10
2秒前
爆米花应助Sunny采纳,获得10
2秒前
奋斗时光完成签到,获得积分10
2秒前
ASUKA完成签到,获得积分10
3秒前
狂野世立完成签到,获得积分10
3秒前
党弛完成签到,获得积分10
3秒前
哆啦的空间站完成签到,获得积分10
4秒前
桐桐应助Alusia采纳,获得10
4秒前
北风完成签到 ,获得积分10
4秒前
Billy发布了新的文献求助10
4秒前
Qimier完成签到 ,获得积分10
4秒前
cc完成签到,获得积分10
5秒前
yilin完成签到 ,获得积分10
6秒前
mqq发布了新的文献求助10
6秒前
ommphey完成签到 ,获得积分10
6秒前
7秒前
宁语完成签到,获得积分10
7秒前
Jm完成签到,获得积分10
8秒前
鸢尾完成签到,获得积分10
8秒前
9秒前
酸奶烤着吃完成签到,获得积分10
9秒前
keke完成签到,获得积分10
9秒前
花生了什么树完成签到,获得积分10
10秒前
rioo发布了新的文献求助10
10秒前
11秒前
星辰大海应助学术学习采纳,获得10
11秒前
qxsw_zjy完成签到,获得积分10
11秒前
是是是WQ完成签到 ,获得积分0
11秒前
无限钻石完成签到,获得积分10
12秒前
梨涡MAMA发布了新的文献求助10
12秒前
12秒前
风帆展发布了新的文献求助10
12秒前
小小阿杰完成签到,获得积分10
12秒前
现代匪完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
13秒前
也许飞鸟能到那个木屋完成签到,获得积分10
13秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A new approach to the extrapolation of accelerated life test data 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3953597
求助须知:如何正确求助?哪些是违规求助? 3499217
关于积分的说明 11094578
捐赠科研通 3229785
什么是DOI,文献DOI怎么找? 1785744
邀请新用户注册赠送积分活动 869499
科研通“疑难数据库(出版商)”最低求助积分说明 801478