Novel Predictors of Intravenous Immunoglobulin Resistance in Chinese Children with Kawasaki Disease

医学 川崎病 接收机工作特性 逻辑回归 计分系统 内科学 曲线下面积 动脉
作者
Peipei Fu,Zhong-Dong Du,Yuesong Pan
出处
期刊:Pediatric Infectious Disease Journal [Ovid Technologies (Wolters Kluwer)]
卷期号:32 (8): e319-e323 被引量:64
标识
DOI:10.1097/inf.0b013e31828e887f
摘要

The purpose of this study was to develop a predictive scoring system to identify intravenous immunoglobulin resistance in children with Kawasaki disease, to implement additional therapies early in the course of their illness and prevent coronary artery lesions.We performed a retrospective review of children with Kawasaki disease treated within 10 days of fever onset. To identify independent predictors of intravenous immunoglobulin resistance, multivariable logistic regression models were constructed using variables selected by univariable analysis. The independent predictors were combined into a new scoring system and compared with 2 existing systems. The discriminatory capacity of the scoring system was assessed using the area under the receiver operating characteristic curves.By logistic regression analysis, polymorphous exanthema, changes around the anus, days of illness at initial treatment, percentage of neutrophils, C-reactive protein levels, albumin levels, and total bilirubin proved to be independent predictors of intravenous immunoglobulin resistance. The new scoring system gave an area under the receiver operating characteristic curve of 0.672. In this scoring system, 2 risk strata were identified: low risk, with scores of 0-3, and high risk, with scores of ≥4. The sensitivity was 54.1% and the specificity was 71.2%.The new scoring system had a higher specificity and sensitivity for Chinese children, compared with the Kobayashi scoring system and the Egami scoring system, but, unfortunately, the new scoring system was not good enough to be widely used because of its low sensitivity.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
潺潺流水完成签到,获得积分10
2秒前
3秒前
sunny完成签到,获得积分10
3秒前
过时的广山完成签到 ,获得积分10
4秒前
xjian发布了新的文献求助10
5秒前
dwfwq完成签到,获得积分10
5秒前
橙子完成签到 ,获得积分10
6秒前
6秒前
11发布了新的文献求助10
6秒前
科目三应助酷朝熙采纳,获得10
6秒前
俭朴寒天发布了新的文献求助10
7秒前
科研小趴菜完成签到,获得积分10
7秒前
郑朗逸完成签到,获得积分10
7秒前
8秒前
博文强识完成签到,获得积分10
9秒前
梦漓完成签到,获得积分10
9秒前
量子星尘发布了新的文献求助10
10秒前
10秒前
zsp完成签到,获得积分10
10秒前
并不瑶远完成签到 ,获得积分10
11秒前
11秒前
TB发布了新的文献求助10
11秒前
11秒前
jiaqiLi发布了新的文献求助10
11秒前
meteor完成签到,获得积分10
12秒前
guozizi应助闹闹采纳,获得100
13秒前
datang完成签到,获得积分10
16秒前
wzz发布了新的文献求助30
16秒前
112345完成签到 ,获得积分10
17秒前
kai发布了新的文献求助10
17秒前
jj发布了新的文献求助10
18秒前
18秒前
爆米花应助潺潺流水采纳,获得10
20秒前
大个应助科研通管家采纳,获得10
21秒前
mmichaell应助科研通管家采纳,获得10
21秒前
shhoing应助科研通管家采纳,获得10
21秒前
蓝天应助LSX采纳,获得10
21秒前
爱咋咋地完成签到,获得积分10
21秒前
思源应助科研通管家采纳,获得10
21秒前
mmyhn应助科研通管家采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Rousseau, le chemin de ronde 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5539853
求助须知:如何正确求助?哪些是违规求助? 4626579
关于积分的说明 14600087
捐赠科研通 4567560
什么是DOI,文献DOI怎么找? 2504090
邀请新用户注册赠送积分活动 1481781
关于科研通互助平台的介绍 1453418