摘要
The global occurrence of mycotoxins is considered to be a major risk factor for human and animal health. Contamination of different agricultural commodities with mycotoxins still occurs despite the most strenuous prevention efforts. As a result, mycotoxin contaminated feed can cause serious disorders and diseases in farm animals. A number of approaches, such as physical and chemical detoxification procedures, have been used to counteract mycotoxins. However, only a few of them have practical application. A recent and promising approach to protect animals against the harmful effects of mycotoxin contaminated feed is the use of substances for reduction of the contamination of feed by mycotoxins. These substances, so-called mycotoxin binders (MB), are added to the diet in order to reduce the absorption of mycotoxins from the gastrointestinal tract and their distribution to blood and target organs, thus preventing or reducing mycotoxicosis in livestock. Recently, the use of such substances as technological feed additives has been officially allowed in the European Union. The efficacy of MB appears to depend on the properties of both the binder and the mycotoxin. Depending on their mode of action, these feed additives may act either by binding mycotoxins to their surface (adsorption), or by degrading or transforming them into less toxic metabolites (biotransformation). Biotransformation can be achieved by mycotoxin-degrading enzymes or by microorganisms producing such enzymes. Various inorganic adsorbents, such as hydrated sodium calcium aluminosilicate, zeolites, bentonites, clays, and activated carbons, have been tested and used as MB. An interesting alternative to inorganic adsorbents for the detoxification of mycotoxins is the use of organic binders, such as yeast cell wall components, synthetic polymers (cholestyramine, polyvinylpyrrolidone), humic substances and dietary fibres. This paper gives an overview of the current knowledge and situation in the field of MB. The most important types of MB, mechanism of their action, and their application as a part of general strategy to counteract mycotoxins are described in this review. Recent advances in the use and study of MB, as well as data of their in vitro and in vivo effectiveness are given. Problems, potential, current trends and perspectives associated with the use of MB are discussed as well in the review.