Modelling permeability for coal reservoirs: A review of analytical models and testing data

煤层气 磁导率 石油工程 收缩率 地质学 煤矿开采 有效应力 环境科学 岩土工程 材料科学 工程类 化学 废物管理 复合材料 生物化学
作者
Zhejun Pan,Luke D. Connell
出处
期刊:International Journal of Coal Geology [Elsevier]
卷期号:92: 1-44 被引量:686
标识
DOI:10.1016/j.coal.2011.12.009
摘要

As with other reservoir types permeability is a key controlling factor for gas migration in coalbed methane reservoirs. The absolute permeability of coal reservoirs changes significantly during gas production, often initially decreasing but then increasing as the reservoir pressure and gas content is drawn down. It has also been observed to decrease markedly during CO2 injection to enhance coalbed methane recovery. In order to predict gas migration models for coal permeability must represent the mechanisms leading to these observed behaviours. The permeability of coal reservoirs behaves in a similar fashion to other fractured reservoirs with respect to effective stress, decreasing exponentially as the effective stress increases. However a unique effect of coal is that it shrinks with gas desorption and swells with adsorption. Within the reservoir this swelling/shrinkage strain leads to a geomechanical response changing the effective stress and thus the permeability. Modelling coal permeability incorporating the impacts from both effective stress and coal swelling/shrinkage dates back about 25 years. Since then a number of permeability models have been developed. In recent years this topic has seen a great deal of activity with a growing body of research on coal permeability behaviour and model development. This article presents a review of coal permeability and the approaches to modelling its behaviour. As an important part of this, the field and laboratory data used to test the models are reviewed in detail. This article also aims to identify some potential areas for future work.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
apple发布了新的文献求助10
刚刚
CarterXD完成签到,获得积分10
刚刚
紧张的友灵完成签到,获得积分10
刚刚
SciGPT应助之仔饼采纳,获得10
1秒前
liudiqiu应助追寻的易烟采纳,获得10
1秒前
Chem is try发布了新的文献求助10
1秒前
1秒前
vsoar完成签到,获得积分10
1秒前
2秒前
3秒前
GGGGGGGGGG发布了新的文献求助10
3秒前
3秒前
打打应助hhh采纳,获得10
4秒前
抓恐龙关注了科研通微信公众号
4秒前
碳点godfather完成签到,获得积分10
4秒前
ren完成签到,获得积分20
4秒前
我想把这玩意儿染成绿的完成签到 ,获得积分10
5秒前
TG_FY完成签到,获得积分10
5秒前
5秒前
hhh完成签到,获得积分10
5秒前
JamesPei应助诗轩采纳,获得10
6秒前
TT完成签到,获得积分10
7秒前
reck发布了新的文献求助10
7秒前
8秒前
DK发布了新的文献求助10
8秒前
英俊的铭应助ren采纳,获得10
8秒前
圈圈发布了新的文献求助10
8秒前
乐乱完成签到 ,获得积分10
9秒前
415484112完成签到,获得积分10
10秒前
yinyi发布了新的文献求助10
10秒前
10秒前
赵一丁完成签到,获得积分10
11秒前
成就绮琴完成签到 ,获得积分10
11秒前
Chen完成签到,获得积分10
11秒前
huanfid完成签到 ,获得积分10
11秒前
11秒前
11秒前
12秒前
Stitch完成签到 ,获得积分10
12秒前
12秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672