Analyze gauss: optimal bounds for privacy-preserving principal component analysis

计算机科学 降维 随机投影
作者
Cynthia Dwork,Kunal Talwar,Abhradeep Thakurta,Li Zhang
出处
期刊:Symposium on the Theory of Computing 卷期号:: 11-20 被引量:126
标识
DOI:10.1145/2591796.2591883
摘要

We consider the problem of privately releasing a low dimensional approximation to a set of data records, represented as a matrix A in which each row corresponds to an individual and each column to an attribute. Our goal is to compute a subspace that captures the covariance of A as much as possible, classically known as principal component analysis (PCA). We assume that each row of A has e2 norm bounded by one, and the privacy guarantee is defined with respect to addition or removal of any single row. We show that the well-known, but misnamed, randomized response algorithm, with properly tuned parameters, provides nearly optimal additive quality gap compared to the best possible singular subspace of A. We further show that when ATA has a large eigenvalue gap -- a reason often cited for PCA -- the quality improves significantly. Optimality (up to logarithmic factors) is proved using techniques inspired by the recent work of Bun, Ullman, and Vadhan on applying Tardos's fingerprinting codes to the construction of hard instances for private mechanisms for 1-way marginal queries. Along the way we define a list culling game which may be of independent interest. By combining the randomized response mechanism with the well-known following the perturbed leader algorithm of Kalai and Vempala we obtain a private online algorithm with nearly optimal regret. The regret of our algorithm even outperforms all the previously known online non-private algorithms of this type. We achieve this better bound by, satisfyingly, borrowing insights and tools from differential privacy!
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
糖糖完成签到,获得积分10
1秒前
彭于彦祖应助CS采纳,获得40
1秒前
JamesPei应助铁拳爱丽丝采纳,获得10
1秒前
1秒前
1秒前
楠瓜完成签到,获得积分10
2秒前
摩的起亚完成签到,获得积分20
2秒前
碳酸氢钠完成签到,获得积分10
4秒前
bkagyin应助Revovler采纳,获得10
4秒前
4秒前
李健应助揍鱼采纳,获得10
4秒前
4秒前
wangdafa发布了新的文献求助10
6秒前
顾矜应助糖糖采纳,获得10
7秒前
7秒前
清风发布了新的文献求助10
7秒前
7秒前
拼搏的明轩完成签到,获得积分10
8秒前
啦啦啦发布了新的文献求助10
8秒前
顾矜应助JIE采纳,获得10
9秒前
英姑应助1234采纳,获得10
9秒前
乐乐发布了新的文献求助10
10秒前
zhangxin完成签到,获得积分10
11秒前
11秒前
缺粥发布了新的文献求助10
12秒前
lijingwen发布了新的文献求助10
12秒前
xxxx完成签到,获得积分10
13秒前
领导范儿应助梧桐雨210采纳,获得10
14秒前
科研通AI2S应助铁拳爱丽丝采纳,获得10
14秒前
14秒前
14秒前
蕊蕊发布了新的文献求助10
15秒前
无或完成签到,获得积分10
16秒前
17秒前
kakaC发布了新的文献求助30
17秒前
万能图书馆应助1234采纳,获得10
17秒前
Revovler发布了新的文献求助10
17秒前
hjc发布了新的文献求助10
18秒前
19秒前
木cheng发布了新的文献求助10
19秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3156848
求助须知:如何正确求助?哪些是违规求助? 2808269
关于积分的说明 7877026
捐赠科研通 2466691
什么是DOI,文献DOI怎么找? 1312998
科研通“疑难数据库(出版商)”最低求助积分说明 630334
版权声明 601919