Cartoon-Texture Image Decomposition Using Blockwise Low-Rank Texture Characterization

图像纹理 纹理过滤 纹理压缩 纹理(宇宙学) 人工智能 纹理合成 计算机科学 模式识别(心理学) 像素 双向纹理函数 计算机视觉 数学 算法 图像(数学) 图像处理
作者
Shunsuke Ono,Takamichi Miyata,Isao Yamada
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:23 (3): 1128-1142 被引量:114
标识
DOI:10.1109/tip.2014.2299067
摘要

Using a novel characterization of texture, we propose an image decomposition technique that can effectively decomposes an image into its cartoon and texture components. The characterization rests on our observation that the texture component enjoys a blockwise low-rank nature with possible overlap and shear, because texture, in general, is globally dissimilar but locally well patterned. More specifically, one can observe that any local block of the texture component consists of only a few individual patterns. Based on this premise, we first introduce a new convex prior, named the block nuclear norm (BNN), leading to a suitable characterization of the texture component. We then formulate a cartoon-texture decomposition model as a convex optimization problem, where the simultaneous estimation of the cartoon and texture components from a given image or degraded observation is executed by minimizing the total variation and BNN. In addition, patterns of texture extending in different directions are extracted separately, which is a special feature of the proposed model and of benefit to texture analysis and other applications. Furthermore, the model can handle various types of degradation occurring in image processing, including blur+missing pixels with several types of noise. By rewriting the problem via variable splitting, the so-called alternating direction method of multipliers becomes applicable, resulting in an efficient algorithmic solution to the problem. Numerical examples illustrate that the proposed model is very selective to patterns of texture, which makes it produce better results than state-of-the-art decomposition models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
善学以致用应助阮红亮采纳,获得30
1秒前
1秒前
CipherSage应助博修采纳,获得10
1秒前
2秒前
追寻柚子完成签到,获得积分10
3秒前
戚薇发布了新的文献求助10
3秒前
小马甲应助勤劳翰采纳,获得10
3秒前
3秒前
limh完成签到,获得积分10
4秒前
4秒前
phobeeee完成签到 ,获得积分10
4秒前
自然1111发布了新的文献求助10
4秒前
q1356478314应助田济采纳,获得10
5秒前
胡图图完成签到,获得积分10
5秒前
5秒前
吕方完成签到,获得积分10
5秒前
7秒前
L-g-b完成签到,获得积分10
7秒前
杨多多完成签到,获得积分10
7秒前
LLLLLL完成签到,获得积分10
7秒前
www完成签到,获得积分10
8秒前
lenon发布了新的文献求助10
8秒前
1111发布了新的文献求助10
9秒前
10秒前
机智傀斗完成签到,获得积分10
10秒前
善良天抒完成签到 ,获得积分20
10秒前
宇宙中心发布了新的文献求助10
10秒前
小蘑菇应助吕方采纳,获得10
10秒前
夙夙发布了新的文献求助10
11秒前
TP完成签到,获得积分10
11秒前
烟花应助科研通管家采纳,获得10
11秒前
SYLH应助科研通管家采纳,获得20
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
汉堡包应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得30
12秒前
916应助科研通管家采纳,获得10
12秒前
Bio应助felix采纳,获得50
12秒前
FashionBoy应助科研通管家采纳,获得10
12秒前
Bio应助科研通管家采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650