雷诺熵
计算机科学
熵(时间箭头)
时频分析
带宽(计算)
信息论
科尔莫戈洛夫复杂性
班级(哲学)
数学
算法
理论计算机科学
离散数学
人工智能
统计
最大熵原理
电信
物理
量子力学
雷达
作者
Patrick Flandrin,Richard G. Baraniuk,Emmanuel Lévêque
标识
DOI:10.1109/icassp.1994.390031
摘要
Many functions have been proposed for estimating signal information content and complexity on the time-frequency plane, including moment-based measures such as the time-bandwidth product and the Shannon and Renyi(see 4th Berkeley Symp. Math., Stat., Prob., vol.1) entropies. When applied to a time-frequency representation from Cohen's (1989) class, the Renyi entropy conforms closely to the visually based notion of complexity that we use when inspecting time-frequency images. A detailed discussion reveals many of the desirable properties of the Renyi information measure for both deterministic and random signals.< >
科研通智能强力驱动
Strongly Powered by AbleSci AI