Latent Class Modeling with Covariates: Two Improved Three-Step Approaches

范畴变量 协变量 计算机科学 多项式logistic回归 统计 潜在类模型 班级(哲学) 逻辑回归 多项式分布 数学 数据挖掘 人工智能
作者
Jeroen K. Vermunt
出处
期刊:Political Analysis [Cambridge University Press]
卷期号:18 (4): 450-469 被引量:1730
标识
DOI:10.1093/pan/mpq025
摘要

Researchers using latent class (LC) analysis often proceed using the following three steps: (1) an LC model is built for a set of response variables, (2) subjects are assigned to LCs based on their posterior class membership probabilities, and (3) the association between the assigned class membership and external variables is investigated using simple cross-tabulations or multinomial logistic regression analysis. Bolck, Croon, and Hagenaars (2004) demonstrated that such a three-step approach underestimates the associations between covariates and class membership. They proposed resolving this problem by means of a specific correction method that involves modifying the third step. In this article, I extend the correction method of Bolck, Croon, and Hagenaars by showing that it involves maximizing a weighted log-likelihood function for clustered data. This conceptualization makes it possible to apply the method not only with categorical but also with continuous explanatory variables, to obtain correct tests using complex sampling variance estimation methods, and to implement it in standard software for logistic regression analysis. In addition, a new maximum likelihood (ML)—based correction method is proposed, which is more direct in the sense that it does not require analyzing weighted data. This new three-step ML method can be easily implemented in software for LC analysis. The reported simulation study shows that both correction methods perform very well in the sense that their parameter estimates and their SEs can be trusted, except for situations with very poorly separated classes. The main advantage of the ML method compared with the Bolck, Croon, and Hagenaars approach is that it is much more efficient and almost as efficient as one-step ML estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
思源应助handan采纳,获得10
1秒前
1秒前
1秒前
lei029发布了新的文献求助10
2秒前
mostspecial发布了新的文献求助10
2秒前
2秒前
陈晓真完成签到,获得积分10
2秒前
西米完成签到 ,获得积分10
3秒前
5秒前
li完成签到,获得积分10
6秒前
6秒前
红莲墨生发布了新的文献求助10
6秒前
叶明昭发布了新的文献求助10
6秒前
韩较瘦完成签到,获得积分0
7秒前
哼哼唧唧发布了新的文献求助10
7秒前
伪装的鱼发布了新的文献求助10
8秒前
小菜发布了新的文献求助10
9秒前
彭于晏应助quququ采纳,获得10
10秒前
失眠无声发布了新的文献求助10
11秒前
科研专家完成签到 ,获得积分10
12秒前
cheersyu发布了新的文献求助10
12秒前
调皮初蝶发布了新的文献求助10
12秒前
14秒前
sevenvictory应助哼哼唧唧采纳,获得10
15秒前
研友_8926mL完成签到,获得积分20
16秒前
量子星尘发布了新的文献求助10
16秒前
Cici完成签到,获得积分10
16秒前
17秒前
zhou完成签到,获得积分10
17秒前
18秒前
嗄巧完成签到,获得积分10
19秒前
Outside发布了新的文献求助10
19秒前
20秒前
jiabaoyu发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
低密度脂蛋白完成签到,获得积分10
24秒前
科目三应助伪装的鱼采纳,获得10
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3975375
求助须知:如何正确求助?哪些是违规求助? 3519718
关于积分的说明 11199471
捐赠科研通 3256067
什么是DOI,文献DOI怎么找? 1798075
邀请新用户注册赠送积分活动 877386
科研通“疑难数据库(出版商)”最低求助积分说明 806305