Latent Class Modeling with Covariates: Two Improved Three-Step Approaches

范畴变量 协变量 计算机科学 多项式logistic回归 统计 潜在类模型 班级(哲学) 逻辑回归 多项式分布 数学 数据挖掘 人工智能
作者
Jeroen K. Vermunt
出处
期刊:Political Analysis [Cambridge University Press]
卷期号:18 (4): 450-469 被引量:1730
标识
DOI:10.1093/pan/mpq025
摘要

Researchers using latent class (LC) analysis often proceed using the following three steps: (1) an LC model is built for a set of response variables, (2) subjects are assigned to LCs based on their posterior class membership probabilities, and (3) the association between the assigned class membership and external variables is investigated using simple cross-tabulations or multinomial logistic regression analysis. Bolck, Croon, and Hagenaars (2004) demonstrated that such a three-step approach underestimates the associations between covariates and class membership. They proposed resolving this problem by means of a specific correction method that involves modifying the third step. In this article, I extend the correction method of Bolck, Croon, and Hagenaars by showing that it involves maximizing a weighted log-likelihood function for clustered data. This conceptualization makes it possible to apply the method not only with categorical but also with continuous explanatory variables, to obtain correct tests using complex sampling variance estimation methods, and to implement it in standard software for logistic regression analysis. In addition, a new maximum likelihood (ML)—based correction method is proposed, which is more direct in the sense that it does not require analyzing weighted data. This new three-step ML method can be easily implemented in software for LC analysis. The reported simulation study shows that both correction methods perform very well in the sense that their parameter estimates and their SEs can be trusted, except for situations with very poorly separated classes. The main advantage of the ML method compared with the Bolck, Croon, and Hagenaars approach is that it is much more efficient and almost as efficient as one-step ML estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助现代的手套采纳,获得10
刚刚
刚刚
szh完成签到 ,获得积分10
刚刚
付一谷完成签到,获得积分10
1秒前
1秒前
1秒前
Jasper应助尊敬的安露采纳,获得10
2秒前
叶一戈发布了新的文献求助10
2秒前
willing-li完成签到,获得积分10
2秒前
zhangfuchao完成签到,获得积分10
3秒前
情怀应助过时的映雁采纳,获得10
3秒前
风云鱼发布了新的文献求助10
3秒前
无奈的鹤发布了新的文献求助10
4秒前
szh关注了科研通微信公众号
4秒前
4秒前
万能图书馆应助刘建章采纳,获得10
5秒前
喏晨发布了新的文献求助10
6秒前
紫色水晶之恋应助大白采纳,获得10
6秒前
7秒前
顺利毕业完成签到,获得积分10
8秒前
踏实的鸽子完成签到,获得积分10
9秒前
梦在彼岸发布了新的文献求助10
9秒前
千城暮雪发布了新的文献求助10
9秒前
共享精神应助无奈的鹤采纳,获得10
9秒前
坚强的翠霜完成签到 ,获得积分10
10秒前
10秒前
11秒前
默默冬瓜完成签到 ,获得积分10
11秒前
调研昵称发布了新的文献求助10
11秒前
优雅的依瑶完成签到,获得积分10
12秒前
Zenobia发布了新的文献求助10
13秒前
赘婿应助连烙采纳,获得10
13秒前
专一的书雪完成签到,获得积分10
14秒前
14秒前
小二郎应助可耐的乐荷采纳,获得10
15秒前
爱听歌寄云完成签到 ,获得积分10
15秒前
17秒前
17秒前
小乌龟完成签到 ,获得积分10
17秒前
老包关注了科研通微信公众号
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3290020
求助须知:如何正确求助?哪些是违规求助? 2926781
关于积分的说明 8429154
捐赠科研通 2598113
什么是DOI,文献DOI怎么找? 1417705
科研通“疑难数据库(出版商)”最低求助积分说明 659806
邀请新用户注册赠送积分活动 642243