亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Latent Class Modeling with Covariates: Two Improved Three-Step Approaches

范畴变量 协变量 计算机科学 多项式logistic回归 统计 潜在类模型 班级(哲学) 逻辑回归 多项式分布 数学 数据挖掘 人工智能
作者
Jeroen K. Vermunt
出处
期刊:Political Analysis [Cambridge University Press]
卷期号:18 (4): 450-469 被引量:1730
标识
DOI:10.1093/pan/mpq025
摘要

Researchers using latent class (LC) analysis often proceed using the following three steps: (1) an LC model is built for a set of response variables, (2) subjects are assigned to LCs based on their posterior class membership probabilities, and (3) the association between the assigned class membership and external variables is investigated using simple cross-tabulations or multinomial logistic regression analysis. Bolck, Croon, and Hagenaars (2004) demonstrated that such a three-step approach underestimates the associations between covariates and class membership. They proposed resolving this problem by means of a specific correction method that involves modifying the third step. In this article, I extend the correction method of Bolck, Croon, and Hagenaars by showing that it involves maximizing a weighted log-likelihood function for clustered data. This conceptualization makes it possible to apply the method not only with categorical but also with continuous explanatory variables, to obtain correct tests using complex sampling variance estimation methods, and to implement it in standard software for logistic regression analysis. In addition, a new maximum likelihood (ML)—based correction method is proposed, which is more direct in the sense that it does not require analyzing weighted data. This new three-step ML method can be easily implemented in software for LC analysis. The reported simulation study shows that both correction methods perform very well in the sense that their parameter estimates and their SEs can be trusted, except for situations with very poorly separated classes. The main advantage of the ML method compared with the Bolck, Croon, and Hagenaars approach is that it is much more efficient and almost as efficient as one-step ML estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
4114发布了新的文献求助10
10秒前
敏敏9813完成签到,获得积分10
18秒前
4114完成签到,获得积分10
21秒前
Ykaor完成签到 ,获得积分10
22秒前
俊逸沂完成签到,获得积分20
28秒前
汉堡包应助ljj001ljj采纳,获得10
33秒前
852应助契合采纳,获得20
34秒前
211JZH完成签到 ,获得积分10
41秒前
科研通AI6应助王大壮采纳,获得10
45秒前
46秒前
49秒前
ljj001ljj发布了新的文献求助10
53秒前
Nomb1发布了新的文献求助10
53秒前
55秒前
今后应助zzz_采纳,获得10
55秒前
共享精神应助Nomb1采纳,获得10
57秒前
1分钟前
OvO_4577发布了新的文献求助10
1分钟前
1分钟前
科研通AI6应助Royal耗子采纳,获得10
1分钟前
初晴发布了新的文献求助10
1分钟前
1分钟前
煤灰完成签到,获得积分10
1分钟前
1分钟前
1分钟前
zzz_发布了新的文献求助10
1分钟前
1分钟前
汉堡包应助煤灰采纳,获得10
1分钟前
Hellochem发布了新的文献求助10
1分钟前
zzz_完成签到,获得积分10
1分钟前
科研通AI2S应助w1x2123采纳,获得10
1分钟前
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得10
1分钟前
mashibeo应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
mashibeo应助科研通管家采纳,获得10
1分钟前
浮游应助科研通管家采纳,获得10
1分钟前
Hayat应助科研通管家采纳,获得10
1分钟前
mashibeo应助科研通管家采纳,获得10
1分钟前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502750
求助须知:如何正确求助?哪些是违规求助? 4598475
关于积分的说明 14464193
捐赠科研通 4532042
什么是DOI,文献DOI怎么找? 2483808
邀请新用户注册赠送积分活动 1467025
关于科研通互助平台的介绍 1439644