亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Latent Class Modeling with Covariates: Two Improved Three-Step Approaches

范畴变量 协变量 计算机科学 多项式logistic回归 统计 潜在类模型 班级(哲学) 逻辑回归 多项式分布 数学 数据挖掘 人工智能
作者
Jeroen K. Vermunt
出处
期刊:Political Analysis [Cambridge University Press]
卷期号:18 (4): 450-469 被引量:1730
标识
DOI:10.1093/pan/mpq025
摘要

Researchers using latent class (LC) analysis often proceed using the following three steps: (1) an LC model is built for a set of response variables, (2) subjects are assigned to LCs based on their posterior class membership probabilities, and (3) the association between the assigned class membership and external variables is investigated using simple cross-tabulations or multinomial logistic regression analysis. Bolck, Croon, and Hagenaars (2004) demonstrated that such a three-step approach underestimates the associations between covariates and class membership. They proposed resolving this problem by means of a specific correction method that involves modifying the third step. In this article, I extend the correction method of Bolck, Croon, and Hagenaars by showing that it involves maximizing a weighted log-likelihood function for clustered data. This conceptualization makes it possible to apply the method not only with categorical but also with continuous explanatory variables, to obtain correct tests using complex sampling variance estimation methods, and to implement it in standard software for logistic regression analysis. In addition, a new maximum likelihood (ML)—based correction method is proposed, which is more direct in the sense that it does not require analyzing weighted data. This new three-step ML method can be easily implemented in software for LC analysis. The reported simulation study shows that both correction methods perform very well in the sense that their parameter estimates and their SEs can be trusted, except for situations with very poorly separated classes. The main advantage of the ML method compared with the Bolck, Croon, and Hagenaars approach is that it is much more efficient and almost as efficient as one-step ML estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
马俊完成签到,获得积分10
刚刚
2秒前
yue完成签到 ,获得积分10
4秒前
wangwangxiao完成签到 ,获得积分10
4秒前
9秒前
9秒前
12秒前
小凯完成签到,获得积分10
13秒前
是个哑巴发布了新的文献求助10
13秒前
14秒前
党弛发布了新的文献求助10
16秒前
洁净的钢笔完成签到 ,获得积分10
20秒前
酷酷问夏完成签到 ,获得积分10
21秒前
34秒前
所所应助Mengzhen Du采纳,获得10
39秒前
Ava应助党弛采纳,获得10
48秒前
Andrewlabeth完成签到 ,获得积分10
52秒前
酒尚温完成签到 ,获得积分10
54秒前
敏感的莫言完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI6应助SF2768采纳,获得10
1分钟前
Mengzhen Du发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Wayne完成签到 ,获得积分10
1分钟前
1分钟前
hqq完成签到,获得积分10
1分钟前
Rainsky完成签到 ,获得积分10
1分钟前
1分钟前
fhg完成签到 ,获得积分10
1分钟前
cy发布了新的文献求助10
1分钟前
wanci应助科研通管家采纳,获得10
1分钟前
1分钟前
爆米花应助科研通管家采纳,获得10
1分钟前
善学以致用应助cxy采纳,获得10
1分钟前
cy完成签到,获得积分10
1分钟前
1分钟前
典雅媚颜完成签到,获得积分20
1分钟前
1分钟前
潜行者完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5657824
求助须知:如何正确求助?哪些是违规求助? 4812668
关于积分的说明 15080373
捐赠科研通 4816006
什么是DOI,文献DOI怎么找? 2577043
邀请新用户注册赠送积分活动 1532043
关于科研通互助平台的介绍 1490584