亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Latent Class Modeling with Covariates: Two Improved Three-Step Approaches

范畴变量 协变量 计算机科学 多项式logistic回归 统计 潜在类模型 班级(哲学) 逻辑回归 多项式分布 数学 数据挖掘 人工智能
作者
Jeroen K. Vermunt
出处
期刊:Political Analysis [Cambridge University Press]
卷期号:18 (4): 450-469 被引量:1730
标识
DOI:10.1093/pan/mpq025
摘要

Researchers using latent class (LC) analysis often proceed using the following three steps: (1) an LC model is built for a set of response variables, (2) subjects are assigned to LCs based on their posterior class membership probabilities, and (3) the association between the assigned class membership and external variables is investigated using simple cross-tabulations or multinomial logistic regression analysis. Bolck, Croon, and Hagenaars (2004) demonstrated that such a three-step approach underestimates the associations between covariates and class membership. They proposed resolving this problem by means of a specific correction method that involves modifying the third step. In this article, I extend the correction method of Bolck, Croon, and Hagenaars by showing that it involves maximizing a weighted log-likelihood function for clustered data. This conceptualization makes it possible to apply the method not only with categorical but also with continuous explanatory variables, to obtain correct tests using complex sampling variance estimation methods, and to implement it in standard software for logistic regression analysis. In addition, a new maximum likelihood (ML)—based correction method is proposed, which is more direct in the sense that it does not require analyzing weighted data. This new three-step ML method can be easily implemented in software for LC analysis. The reported simulation study shows that both correction methods perform very well in the sense that their parameter estimates and their SEs can be trusted, except for situations with very poorly separated classes. The main advantage of the ML method compared with the Bolck, Croon, and Hagenaars approach is that it is much more efficient and almost as efficient as one-step ML estimation.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
12秒前
21秒前
科研通AI6.1应助993494543采纳,获得10
32秒前
37秒前
优美的莹芝完成签到,获得积分10
51秒前
科研通AI2S应助信陵君无忌采纳,获得10
56秒前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
古古怪界丶黑大帅完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
993494543发布了新的文献求助10
2分钟前
993494543完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
爆米花应助科研通管家采纳,获得30
3分钟前
3分钟前
3分钟前
eeevaxxx完成签到 ,获得积分10
3分钟前
852应助安青兰采纳,获得10
4分钟前
4分钟前
4分钟前
安青兰发布了新的文献求助10
4分钟前
4分钟前
Feng完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
lanxinyue发布了新的文献求助10
4分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
mkeale完成签到,获得积分10
5分钟前
5分钟前
5分钟前
花卷卷发布了新的文献求助10
5分钟前
5分钟前
玉荣完成签到 ,获得积分10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5764374
求助须知:如何正确求助?哪些是违规求助? 5551219
关于积分的说明 15406175
捐赠科研通 4899585
什么是DOI,文献DOI怎么找? 2635809
邀请新用户注册赠送积分活动 1583978
关于科研通互助平台的介绍 1539134