Colloid retention at the meniscus-wall contact line in an open microchannel

胶体 接触角 弯月面 微通道 化学 材料科学 机械 流动可视化 光学 复合材料 流量(数学) 纳米技术 物理 入射(几何) 物理化学
作者
Yuniati Zevi,Bin Gao,Wei Zhang,Verónica L. Morales,M. Ekrem Cakmak,Evelyn A. Medrano,Wenjing Sang,Tammo S. Steenhuis
出处
期刊:Water Research [Elsevier BV]
卷期号:46 (2): 295-306 被引量:41
标识
DOI:10.1016/j.watres.2011.09.046
摘要

Colloid retention mechanisms in partially saturated porous media are currently being researched with an array of visualization techniques. These visualization techniques have refined our understanding of colloid movement and retention at the pore scale beyond what can be obtained from breakthrough experiments. One of the remaining questions is what mechanisms are responsible for colloid immobilization at the triple point where air, water, and soil grain meet. The objective of this study was to investigate how colloids are transported to the air-water-solid (AWS) contact line in an open triangular microchannel, and then retained as a function of meniscus contact angle with the wall and solution ionic strength. Colloid flow path, meniscus shape and meniscus-wall contact angle, and colloid retention at the AWS contact line were visualized and quantified with a confocal microscope. Experimental results demonstrated that colloid retention at the AWS contact line was significant when the meniscus-wall contact angle was less than 16°, but was minimal for the meniscus-wall contact angles exceeding 20°. Tracking of individual colloids and computational hydrodynamic simulation both revealed that for small contact angles (e.g., 12.5°), counter flow and flow vortices formed near the AWS contact line, but not for large contact angles (e.g., 28°). This counter flow helped deliver the colloids to the wall surface just below the contact line. In accordance with DLVO and hydrodynamic torque calculations, colloid movement may be stopped when the colloid reached the secondary minimum at the wall near the contact line. However, contradictory to the prediction of the torque analysis, colloid retention at the AWS contact line decreased with increasing ionic strength for contact angles of 10–20°, indicating that the air-water interface was involved through both counter flow and capillary force. We hypothesized that capillary force pushed the colloid through the primary energy barrier to the primary minimum to become immobilized, when small fluctuations in water level stretched the meniscus over the colloid. For large meniscus-wall contact angles counter flow was not observed, resulting in less colloid retention, because a smaller number of colloids were transported to the contact line.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
闪闪秋寒完成签到 ,获得积分10
4秒前
kelakola完成签到,获得积分10
4秒前
Crystal发布了新的文献求助10
5秒前
科学细胞发布了新的文献求助10
6秒前
科目三应助lulululululu采纳,获得20
7秒前
忧虑的花卷完成签到,获得积分10
8秒前
万邦德完成签到,获得积分10
11秒前
13秒前
15秒前
阿玛特拉斯完成签到,获得积分10
16秒前
17秒前
Hommand_藏山完成签到,获得积分10
18秒前
gy驳回了666应助
18秒前
安详凡发布了新的文献求助10
19秒前
coini发布了新的文献求助10
19秒前
木木杨完成签到,获得积分10
20秒前
Kirito完成签到,获得积分0
21秒前
WW发布了新的文献求助10
23秒前
执着的绿柏完成签到,获得积分10
28秒前
李健的小迷弟应助蓝桉采纳,获得30
29秒前
恋空完成签到 ,获得积分10
36秒前
小欧文完成签到,获得积分10
37秒前
繁多星完成签到,获得积分10
37秒前
41秒前
充电宝应助李胜采纳,获得10
43秒前
NEKO33完成签到,获得积分20
44秒前
46秒前
娟娟发布了新的文献求助10
46秒前
酷波er应助yuan466125789采纳,获得10
50秒前
51秒前
上官若男应助娟娟采纳,获得10
56秒前
wanci应助log采纳,获得10
58秒前
悄悄是心上的肖肖完成签到 ,获得积分10
59秒前
隐形曼青应助迷路芝麻采纳,获得10
1分钟前
LAVINE完成签到 ,获得积分10
1分钟前
asdf应助科研鸟采纳,获得10
1分钟前
冷酷青椒完成签到,获得积分10
1分钟前
娟娟完成签到,获得积分20
1分钟前
1分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966324
求助须知:如何正确求助?哪些是违规求助? 3511753
关于积分的说明 11159467
捐赠科研通 3246341
什么是DOI,文献DOI怎么找? 1793389
邀请新用户注册赠送积分活动 874417
科研通“疑难数据库(出版商)”最低求助积分说明 804357