适体
等温滴定量热法
表面等离子共振
凝血酶
圆二色性
化学
结合位点
生物物理学
丝氨酸蛋白酶
水蛭素
血栓调节蛋白
动力学
立体化学
生物化学
蛋白酶
纳米技术
材料科学
酶
分子生物学
生物
纳米颗粒
物理
免疫学
血小板
量子力学
作者
Po‐Hsun Lin,Ren-Hao Chen,Chung‐Han Lee,Yung Chang,Chien‐Sheng Chen,Wen‐Yih Chen
标识
DOI:10.1016/j.colsurfb.2011.07.032
摘要
Thrombin, a multifunctional serine protease, has both procoagulant and anticoagulant functions in human blood. Thrombin has two electropositive exosites. One is the fibrinogen-binding site and the other is the heparin-binding site. Over the past decade, two thrombin-binding aptamers (15-mer and 29-mer) were reported by SELEX technique. Recently, many studies examined the interactions between the 15-mer aptamer and thrombin extensively, but the data on the difference of these two aptamers binding to thrombin are still lacking and worth investigating for fundamental understanding. In the present study, we combined conformational data from circular dichroism (CD), kinetics and thermodynamics information from surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) to compare the binding mechanism between the two aptamers with thrombin. Special attentions were paid to the formation of G-quadruplex and the effects of ions on the aptamer conformation on the binding and the kinetics discrimination between specific and nonspecific interactions of the binding. The results indicated reasonably that the 15-mer aptamer bound to fibrinogen-binding site of thrombin using a G-quadruplex structure and was dominated by electrostatic interactions, while the 29-mer aptamer bound to heparin-binding site thrombin using a duplex structure and was driven mainly by hydrophobic effects.
科研通智能强力驱动
Strongly Powered by AbleSci AI