Multi-objective optimization approach for channel selection and cross-subject generalization in RSVP-based BCIs

一般化 可视化快速呈现 计算机科学 频道(广播) 人工智能 选择(遗传算法) 数据挖掘 机器学习 模式识别(心理学) 任务(项目管理) 数学 认知 电信 心理学 数学分析 管理 神经科学 经济
作者
Meng Xu,Shengyang Li,Dan Wang,Yijun Wang,Lijian Zhang,Xiaoqian Wei
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 046076-046076 被引量:12
标识
DOI:10.1088/1741-2552/ac0489
摘要

Abstract Objective. Achieving high precision rapid serial visual presentation (RSVP) task often requires many electrode channels to obtain more information. However, the more channels may contain more redundant information and also lead to its limited practical applications. Therefore, it is necessary to reduce the number of channels to enhance the classification performance and users experience. Furthermore, cross-subject generalization has always been one of major challenges in electroencephalography channel reduction, especially in the RSVP paradigm. Most search-based channel selection method presented in the literature are single-objective methods, the classification accuracy (ACC) is usually chosen as the only criterion. Approach. In this article, the idea of multi-objective optimization was introduced into the RSVP channel selection to minimize two objectives: classification error and the number of channels. By combining a multi-objective evolutionary algorithm for solving large-scale sparse problems and hierarchical discriminant component analysis (HDCA), a novel channel selection method for RSVP was proposed. After that, the cross-subject generalization validation through the proposed channel selection method. Main results. The proposed method achieved an average ACC of 95.41% in a public dataset, which is 3.49% higher than HDCA. The ACC was increased by 2.73% and 2.52%, respectively. Besides, the cross-subject generalization models in channel selection, namely special-16 and special-32, on untrained subjects show that the classification performance is better than the Hoffmann empirical channels. Significance. The proposed channel selection method could reduce the calibration time in the experimental preparation phase and obtain a better accuracy, which is promising application in the RSVP scenario that requires low-density electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
4秒前
今后应助葛擎苍采纳,获得10
5秒前
7秒前
8秒前
可爱的函函应助张秋雨采纳,获得10
8秒前
科研的打工狗完成签到,获得积分10
9秒前
12秒前
北雨发布了新的文献求助10
14秒前
旷野天完成签到,获得积分10
15秒前
yanglian2003完成签到 ,获得积分10
17秒前
yyauthor发布了新的文献求助20
17秒前
牛奶秋刀鱼完成签到,获得积分10
18秒前
彭于晏应助机智羞花采纳,获得10
19秒前
19秒前
羊羊羊发布了新的文献求助10
21秒前
传奇3应助小娜娜采纳,获得10
21秒前
25秒前
haowu发布了新的文献求助10
25秒前
MoonFlows应助年轻的熊猫采纳,获得20
25秒前
vickeylea完成签到,获得积分10
25秒前
25秒前
LGZ完成签到 ,获得积分0
25秒前
爆米花应助迅速文龙采纳,获得10
28秒前
重要千青完成签到,获得积分10
28秒前
physic完成签到 ,获得积分10
29秒前
29秒前
顾矜应助科研通管家采纳,获得10
30秒前
领导范儿应助科研通管家采纳,获得10
30秒前
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
30秒前
研友_VZG7GZ应助科研通管家采纳,获得10
30秒前
JamesPei应助科研通管家采纳,获得30
30秒前
科研通AI2S应助科研通管家采纳,获得10
30秒前
31秒前
脑洞疼应助科研通管家采纳,获得10
31秒前
机智羞花发布了新的文献求助10
31秒前
33秒前
36秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157313
求助须知:如何正确求助?哪些是违规求助? 2808757
关于积分的说明 7878369
捐赠科研通 2467114
什么是DOI,文献DOI怎么找? 1313219
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919