Multi-objective optimization approach for channel selection and cross-subject generalization in RSVP-based BCIs

一般化 可视化快速呈现 计算机科学 频道(广播) 人工智能 选择(遗传算法) 数据挖掘 机器学习 模式识别(心理学) 任务(项目管理) 数学 认知 电信 心理学 数学分析 管理 神经科学 经济
作者
Meng Xu,Shengyang Li,Dan Wang,Yijun Wang,Lijian Zhang,Xiaoqian Wei
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:18 (4): 046076-046076 被引量:12
标识
DOI:10.1088/1741-2552/ac0489
摘要

Abstract Objective. Achieving high precision rapid serial visual presentation (RSVP) task often requires many electrode channels to obtain more information. However, the more channels may contain more redundant information and also lead to its limited practical applications. Therefore, it is necessary to reduce the number of channels to enhance the classification performance and users experience. Furthermore, cross-subject generalization has always been one of major challenges in electroencephalography channel reduction, especially in the RSVP paradigm. Most search-based channel selection method presented in the literature are single-objective methods, the classification accuracy (ACC) is usually chosen as the only criterion. Approach. In this article, the idea of multi-objective optimization was introduced into the RSVP channel selection to minimize two objectives: classification error and the number of channels. By combining a multi-objective evolutionary algorithm for solving large-scale sparse problems and hierarchical discriminant component analysis (HDCA), a novel channel selection method for RSVP was proposed. After that, the cross-subject generalization validation through the proposed channel selection method. Main results. The proposed method achieved an average ACC of 95.41% in a public dataset, which is 3.49% higher than HDCA. The ACC was increased by 2.73% and 2.52%, respectively. Besides, the cross-subject generalization models in channel selection, namely special-16 and special-32, on untrained subjects show that the classification performance is better than the Hoffmann empirical channels. Significance. The proposed channel selection method could reduce the calibration time in the experimental preparation phase and obtain a better accuracy, which is promising application in the RSVP scenario that requires low-density electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助蒐慝采纳,获得10
刚刚
刚刚
1秒前
Nelson完成签到,获得积分10
1秒前
犹豫草莓发布了新的文献求助10
2秒前
李爱国应助新威宝贝采纳,获得10
2秒前
3秒前
515发布了新的文献求助10
3秒前
白开水发布了新的文献求助10
3秒前
Lucas应助Silole采纳,获得10
3秒前
4秒前
4秒前
RSHL完成签到,获得积分10
4秒前
5秒前
天真的土豆完成签到,获得积分20
6秒前
zou发布了新的文献求助10
6秒前
屁屁屁发布了新的文献求助10
9秒前
田様应助QuxiZhang采纳,获得10
10秒前
zjw发布了新的文献求助10
10秒前
11秒前
ossantu发布了新的文献求助10
11秒前
11秒前
英俊的铭应助515采纳,获得10
12秒前
大个应助无情的怜晴采纳,获得10
13秒前
共享精神应助Dr.Sun采纳,获得10
13秒前
13秒前
15秒前
Silole发布了新的文献求助10
16秒前
GCXH发布了新的文献求助10
17秒前
Li发布了新的文献求助30
18秒前
19秒前
19秒前
zzh发布了新的文献求助10
20秒前
wanci应助迅速的寻绿采纳,获得10
22秒前
杨鹏完成签到,获得积分10
22秒前
23秒前
小马甲应助GCXH采纳,获得10
24秒前
1531811发布了新的文献求助10
24秒前
25秒前
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3756727
求助须知:如何正确求助?哪些是违规求助? 3300097
关于积分的说明 10112243
捐赠科研通 3014504
什么是DOI,文献DOI怎么找? 1655600
邀请新用户注册赠送积分活动 790016
科研通“疑难数据库(出版商)”最低求助积分说明 753546