亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

KerNet: A Novel Deep Learning Approach for Keratoconus and Sub-Clinical Keratoconus Detection Based on Raw Data of the Pentacam HR System

圆锥角膜 人工智能 计算机科学 卷积神经网络 深度学习 亚临床感染 模式识别(心理学) 角膜 眼科 医学 病理
作者
Ruiwei Feng,Zhe Xu,Xiangshang Zheng,Heping Hu,Xiuming Jin,Danny Z. Chen,Ke Yao,Jian Wu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:25 (10): 3898-3910 被引量:31
标识
DOI:10.1109/jbhi.2021.3079430
摘要

Keratoconus is one of the most severe corneal diseases, which is difficult to detect at the early stage (i.e., sub-clinical keratoconus) and possibly results in vision loss. In this paper, we propose a novel end-to-end deep learning approach, called KerNet, which processes the raw data of the Pentacam HR system (consisting of five numerical matrices) to detect keratoconus and sub-clinical keratoconus. Specifically, we propose a novel convolutional neural network, called KerNet, containing five branches as the backbone with a multi-level fusion architecture. The five branches receive five matrices separately and capture effectively the features of different matrices by several cascaded residual blocks. The multi-level fusion architecture (i.e., low-level fusion and high-level fusion) moderately takes into account the correlation among five slices and fuses the extracted features for better prediction. Experimental results show that: (1) our novel approach outperforms state-of-the-art methods on an in-house dataset, by ~1% for keratoconus detection accuracy and ~4 for sub-clinical keratoconus detection accuracy; (2) the attention maps visualized by Grad-CAM show that our KerNet places more attention on the inferior temporal part for sub-clinical keratoconus, which has been proved as the identifying regions for ophthalmologists to detect sub-clinical keratoconus in previous clinical studies. To our best knowledge, we are the first to propose an end-to-end deep learning approach utilizing raw data obtained by the Pentacam HR system for keratoconus and subclinical keratoconus detection. Further, the prediction performance and the clinical significance of our KerNet are well evaluated and proved by two clinical experts. Our code is available at https://github.com/upzheng/Keratoconus.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Xulun发布了新的文献求助10
17秒前
yzhilson完成签到 ,获得积分10
35秒前
45秒前
jennie完成签到 ,获得积分10
46秒前
酷酷士晋发布了新的文献求助10
52秒前
1分钟前
懒洋洋发布了新的文献求助10
1分钟前
桐桐应助天真咖啡豆采纳,获得10
1分钟前
李爱国应助Gryphon采纳,获得10
1分钟前
1分钟前
2分钟前
科目三应助天真咖啡豆采纳,获得10
2分钟前
2分钟前
Xulun完成签到,获得积分10
2分钟前
Gryphon发布了新的文献求助10
2分钟前
2分钟前
2分钟前
FashionBoy应助Gryphon采纳,获得10
2分钟前
Oracle应助科研通管家采纳,获得30
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
3分钟前
Gryphon发布了新的文献求助10
3分钟前
CodeCraft应助懒洋洋采纳,获得10
3分钟前
4分钟前
懒洋洋发布了新的文献求助10
4分钟前
上官若男应助懒洋洋采纳,获得10
4分钟前
lanxinge完成签到 ,获得积分20
4分钟前
天天快乐应助Gryphon采纳,获得10
4分钟前
4分钟前
mmyhn应助科研通管家采纳,获得10
4分钟前
5分钟前
Gryphon发布了新的文献求助10
5分钟前
yffff完成签到,获得积分10
5分钟前
yffff发布了新的文献求助10
5分钟前
Tayzon完成签到 ,获得积分10
5分钟前
华仔应助Gryphon采纳,获得10
6分钟前
Oracle应助科研通管家采纳,获得20
6分钟前
6分钟前
Gryphon发布了新的文献求助10
7分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3770451
求助须知:如何正确求助?哪些是违规求助? 3315478
关于积分的说明 10176440
捐赠科研通 3030489
什么是DOI,文献DOI怎么找? 1662932
邀请新用户注册赠送积分活动 795249
科研通“疑难数据库(出版商)”最低求助积分说明 756700