A clinical‐radiomics model incorporating T2‐weighted and diffusion‐weighted magnetic resonance images predicts the existence of lymphovascular invasion / perineural invasion in patients with colorectal cancer

旁侵犯 比例危险模型 放射科 医学 接收机工作特性 无线电技术 结直肠癌 队列 磁共振成像 淋巴血管侵犯 置信区间 癌症 核医学 磁共振弥散成像 内科学 转移
作者
Ke Zhang,Yiyue Ren,Shufeng Xu,Wei Lu,Shengnan Xie,Jiali Qu,Xiaoyan Wang,Bo Shen,Peipei Pang,Xiujun Cai,Jihong Sun
出处
期刊:Medical Physics [Wiley]
卷期号:48 (9): 4872-4882 被引量:23
标识
DOI:10.1002/mp.15001
摘要

Lymphovascular invasion (LVI) and perineural invasion (PNI) are independent prognostic factors in patients with colorectal cancer (CRC). In this study, we aimed to develop and validate a preoperative predictive model based on high-throughput radiomic features and clinical factors for accurate prediction of LVI/PNI in these patients.Two hundred and sixty-three patients who underwent colorectal resection for histologically confirmed CRC between 1 February 2011 and 30 June 2020 were retrospectively enrolled. Between 1 February 2011 and 30 September 2018, 213 patients were randomly divided into a training cohort (n = 149) and a validation cohort (n = 64) by a ratio of 7:3. We used a 10000-iteration bootstrap analysis to estimate the prediction error and confidence interval for two cohorts. The independent test cohort consisted of 50 patients between 1 October 2018 and 30 June 2020. Regions of interest (ROIs) were manually delineated in high-resolution T2-weighted and diffusion-weighted images using ITK-SNAP software on each CRC tumor slice. In total, 3356 radiomic features were extracted from each ROI. Next, we used the maximum relevance minimum redundancy and least absolute shrinkage and selection operator algorithms to select the strongest of these features to establish a clinical-radiomics model for predicting LVI/PNI. Receiver-operating characteristic and calibration curves were then plotted to evaluate the predictive performance of the model in the training, validation, and independent test cohorts.A multiparametric clinical-radiomics model combining MRI-reported extramural vascular invasion (EMVI) status and a Radiomics score for the LVI/PNI estimation was established. This model had significant predictive power in the training cohort (area under the curve [AUC] 0.91; 95% confidence interval [CI]: 0.85-0.97), validation cohort (AUC: 0.88; 95% CI: 0.79-89), and independent test cohorts (AUC 0.83, 95% CI 0.72-0.95). The model performed well in the independent test cohort with sensitivity of 0.818, specificity of 0.714, and accuracy of 0.760. Calibration curve and decision curve analysis demonstrated clinical benefits.Multiparametric clinical-radiomics models can accurately predict LVI/PNI in patients with CRC. Our model has predictive ability that should improve preoperative diagnostic performance and allow more individualized treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜乎贝贝发布了新的文献求助20
刚刚
共享精神应助玉婷采纳,获得10
1秒前
香蕉觅云应助小宇仔采纳,获得10
1秒前
adad发布了新的文献求助10
1秒前
共享精神应助核桃采纳,获得10
2秒前
wanci应助核桃采纳,获得10
2秒前
chlift发布了新的文献求助10
2秒前
lgq12697应助核桃采纳,获得10
2秒前
852应助核桃采纳,获得10
2秒前
李健应助核桃采纳,获得30
2秒前
顾矜应助核桃采纳,获得10
2秒前
天天快乐应助核桃采纳,获得10
2秒前
香蕉觅云应助核桃采纳,获得10
2秒前
李健应助核桃采纳,获得10
2秒前
爆米花应助核桃采纳,获得10
2秒前
无花果应助太空人采纳,获得30
3秒前
共享精神应助流泪猫猫头采纳,获得10
3秒前
3秒前
邓佳鑫Alan应助苹果不平采纳,获得10
3秒前
curtainai完成签到,获得积分10
3秒前
4秒前
4秒前
苗条的麦片完成签到 ,获得积分10
4秒前
4秒前
满意的聋五完成签到,获得积分10
5秒前
5秒前
Ava应助墨色采纳,获得10
5秒前
舍曲林完成签到,获得积分10
5秒前
坤坤完成签到,获得积分10
6秒前
bkagyin应助苏苏采纳,获得10
6秒前
打打应助Cindy采纳,获得10
6秒前
西柚发布了新的文献求助10
6秒前
7秒前
MZG完成签到,获得积分10
8秒前
华仔应助jiangyi采纳,获得20
8秒前
苗条的麦片关注了科研通微信公众号
8秒前
浮游应助ACE采纳,获得10
8秒前
Muccio发布了新的文献求助10
9秒前
111完成签到,获得积分20
9秒前
苹果丹烟完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
Thomas Hobbes' Mechanical Conception of Nature 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5095428
求助须知:如何正确求助?哪些是违规求助? 4308538
关于积分的说明 13424622
捐赠科研通 4135366
什么是DOI,文献DOI怎么找? 2265484
邀请新用户注册赠送积分活动 1268868
关于科研通互助平台的介绍 1204869