A clinical‐radiomics model incorporating T2‐weighted and diffusion‐weighted magnetic resonance images predicts the existence of lymphovascular invasion / perineural invasion in patients with colorectal cancer

旁侵犯 比例危险模型 放射科 医学 接收机工作特性 无线电技术 结直肠癌 队列 磁共振成像 淋巴血管侵犯 置信区间 癌症 核医学 磁共振弥散成像 内科学 转移
作者
Ke Zhang,Yiyue Ren,Shufeng Xu,Wei Lu,Shengnan Xie,Jiali Qu,Xiaoyan Wang,Bo Shen,Peipei Pang,Xiujun Cai,Jihong Sun
出处
期刊:Medical Physics [Wiley]
卷期号:48 (9): 4872-4882 被引量:15
标识
DOI:10.1002/mp.15001
摘要

Purpose Lymphovascular invasion (LVI) and perineural invasion (PNI) are independent prognostic factors in patients with colorectal cancer (CRC). In this study, we aimed to develop and validate a preoperative predictive model based on high‐throughput radiomic features and clinical factors for accurate prediction of LVI/PNI in these patients. Methods Two hundred and sixty‐three patients who underwent colorectal resection for histologically confirmed CRC between 1 February 2011 and 30 June 2020 were retrospectively enrolled. Between 1 February 2011 and 30 September 2018, 213 patients were randomly divided into a training cohort (n = 149) and a validation cohort (n = 64) by a ratio of 7:3. We used a 10000‐iteration bootstrap analysis to estimate the prediction error and confidence interval for two cohorts. The independent test cohort consisted of 50 patients between 1 October 2018 and 30 June 2020. Regions of interest (ROIs) were manually delineated in high‐resolution T2‐weighted and diffusion‐weighted images using ITK‐SNAP software on each CRC tumor slice. In total, 3356 radiomic features were extracted from each ROI. Next, we used the maximum relevance minimum redundancy and least absolute shrinkage and selection operator algorithms to select the strongest of these features to establish a clinical‐radiomics model for predicting LVI/PNI. Receiver‐operating characteristic and calibration curves were then plotted to evaluate the predictive performance of the model in the training, validation, and independent test cohorts. Results A multiparametric clinical‐radiomics model combining MRI‐reported extramural vascular invasion (EMVI) status and a Radiomics score for the LVI/PNI estimation was established. This model had significant predictive power in the training cohort (area under the curve [AUC] 0.91; 95% confidence interval [CI]: 0.85–0.97), validation cohort (AUC: 0.88; 95% CI: 0.79–89), and independent test cohorts (AUC 0.83, 95% CI 0.72–0.95). The model performed well in the independent test cohort with sensitivity of 0.818, specificity of 0.714, and accuracy of 0.760. Calibration curve and decision curve analysis demonstrated clinical benefits. Conclusion Multiparametric clinical‐radiomics models can accurately predict LVI/PNI in patients with CRC. Our model has predictive ability that should improve preoperative diagnostic performance and allow more individualized treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZDZ发布了新的文献求助10
刚刚
1秒前
1秒前
eris完成签到 ,获得积分10
2秒前
5秒前
李爱国应助bestbanana采纳,获得10
5秒前
fanpengzhen完成签到,获得积分10
6秒前
可靠橘子完成签到,获得积分10
6秒前
7秒前
7秒前
xxwwwww发布了新的文献求助10
8秒前
hgh完成签到,获得积分10
8秒前
aq22完成签到 ,获得积分10
10秒前
ccc发布了新的文献求助10
10秒前
你好啊发布了新的文献求助10
11秒前
12秒前
小马甲应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
Jasper应助科研通管家采纳,获得30
13秒前
bkagyin应助科研通管家采纳,获得10
13秒前
13秒前
13秒前
沉静的红酒完成签到,获得积分10
13秒前
14秒前
17秒前
俭朴的元绿完成签到 ,获得积分10
17秒前
tiger发布了新的文献求助10
17秒前
18秒前
serein应助xx采纳,获得10
20秒前
英姑应助你好啊采纳,获得10
20秒前
每天都在找完成签到,获得积分10
21秒前
21秒前
辰冠哲完成签到,获得积分10
21秒前
aaoo发布了新的文献求助10
23秒前
小美完成签到 ,获得积分10
24秒前
clevenx发布了新的文献求助10
26秒前
27秒前
vassallo完成签到 ,获得积分10
29秒前
积极的未来完成签到,获得积分10
31秒前
哭泣的鸵鸟完成签到,获得积分10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137664
求助须知:如何正确求助?哪些是违规求助? 2788576
关于积分的说明 7787679
捐赠科研通 2444950
什么是DOI,文献DOI怎么找? 1300139
科研通“疑难数据库(出版商)”最低求助积分说明 625814
版权声明 601023