A clinical‐radiomics model incorporating T2‐weighted and diffusion‐weighted magnetic resonance images predicts the existence of lymphovascular invasion / perineural invasion in patients with colorectal cancer

旁侵犯 比例危险模型 放射科 医学 接收机工作特性 无线电技术 结直肠癌 队列 磁共振成像 淋巴血管侵犯 置信区间 癌症 核医学 磁共振弥散成像 内科学 转移
作者
Ke Zhang,Yiyue Ren,Shufeng Xu,Wei Lu,Shengnan Xie,Jiali Qu,Xiaoyan Wang,Bo Shen,Peipei Pang,Xiujun Cai,Jihong Sun
出处
期刊:Medical Physics [Wiley]
卷期号:48 (9): 4872-4882 被引量:23
标识
DOI:10.1002/mp.15001
摘要

Lymphovascular invasion (LVI) and perineural invasion (PNI) are independent prognostic factors in patients with colorectal cancer (CRC). In this study, we aimed to develop and validate a preoperative predictive model based on high-throughput radiomic features and clinical factors for accurate prediction of LVI/PNI in these patients.Two hundred and sixty-three patients who underwent colorectal resection for histologically confirmed CRC between 1 February 2011 and 30 June 2020 were retrospectively enrolled. Between 1 February 2011 and 30 September 2018, 213 patients were randomly divided into a training cohort (n = 149) and a validation cohort (n = 64) by a ratio of 7:3. We used a 10000-iteration bootstrap analysis to estimate the prediction error and confidence interval for two cohorts. The independent test cohort consisted of 50 patients between 1 October 2018 and 30 June 2020. Regions of interest (ROIs) were manually delineated in high-resolution T2-weighted and diffusion-weighted images using ITK-SNAP software on each CRC tumor slice. In total, 3356 radiomic features were extracted from each ROI. Next, we used the maximum relevance minimum redundancy and least absolute shrinkage and selection operator algorithms to select the strongest of these features to establish a clinical-radiomics model for predicting LVI/PNI. Receiver-operating characteristic and calibration curves were then plotted to evaluate the predictive performance of the model in the training, validation, and independent test cohorts.A multiparametric clinical-radiomics model combining MRI-reported extramural vascular invasion (EMVI) status and a Radiomics score for the LVI/PNI estimation was established. This model had significant predictive power in the training cohort (area under the curve [AUC] 0.91; 95% confidence interval [CI]: 0.85-0.97), validation cohort (AUC: 0.88; 95% CI: 0.79-89), and independent test cohorts (AUC 0.83, 95% CI 0.72-0.95). The model performed well in the independent test cohort with sensitivity of 0.818, specificity of 0.714, and accuracy of 0.760. Calibration curve and decision curve analysis demonstrated clinical benefits.Multiparametric clinical-radiomics models can accurately predict LVI/PNI in patients with CRC. Our model has predictive ability that should improve preoperative diagnostic performance and allow more individualized treatment decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安静寒风完成签到 ,获得积分10
刚刚
刚刚
lulu发布了新的文献求助10
刚刚
左鞅完成签到 ,获得积分10
2秒前
3秒前
TvT发布了新的文献求助10
3秒前
独特鸽子发布了新的文献求助10
3秒前
chuzihang完成签到 ,获得积分10
3秒前
NexusExplorer应助舒服的觅夏采纳,获得10
4秒前
友好的缘分完成签到,获得积分10
5秒前
慕青应助小申采纳,获得10
6秒前
赛因斯完成签到,获得积分10
6秒前
7秒前
Loik发布了新的文献求助10
8秒前
科研通AI2S应助独特鸽子采纳,获得10
11秒前
12秒前
xiao发布了新的文献求助100
12秒前
Owen应助zyy采纳,获得10
13秒前
13秒前
荷月初六完成签到,获得积分10
14秒前
荷月初六发布了新的文献求助20
17秒前
六月初八夜完成签到,获得积分10
18秒前
ll发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
18秒前
劳恩特应助非而者厚采纳,获得30
19秒前
Li发布了新的文献求助10
19秒前
雪落完成签到,获得积分10
19秒前
20秒前
20秒前
25秒前
25秒前
27秒前
Li完成签到,获得积分10
28秒前
华仔应助悠悠采纳,获得10
28秒前
www完成签到,获得积分10
28秒前
yuzhuoWng发布了新的文献求助10
29秒前
nylon发布了新的文献求助10
29秒前
29秒前
san完成签到,获得积分10
31秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5419479
求助须知:如何正确求助?哪些是违规求助? 4534726
关于积分的说明 14146477
捐赠科研通 4451326
什么是DOI,文献DOI怎么找? 2441717
邀请新用户注册赠送积分活动 1433274
关于科研通互助平台的介绍 1410587