嗜水气单胞菌
生物
DNA旋转酶
抗生素耐药性
抗生素
微生物学
细菌
蛋白质组学
作者
Zhen Li,Lishan Zhang,Qingli Song,Guibin Wang,Wenxiao Yang,Huamei Tang,Ramanathan Srinivasan,Ling Lin,Xiangmin Lin
标识
DOI:10.3389/fmicb.2021.699415
摘要
Bacterial antibiotic resistance is a serious global problem; the underlying regulatory mechanisms are largely elusive. The earlier reports states that the vital role of transcriptional regulators (TRs) in bacterial antibiotic resistance. Therefore, we have investigated the role of TRs on enoxacin (ENX) resistance in Aeromonas hydrophila in this study. A label-free quantitative proteomics method was utilized to compare the protein profiles of the ahslyA knockout and wild-type A. hydrophila strains under ENX stress. Bioinformatics analysis showed that the deletion of ahslyA triggers the up-regulated expression of some vital antibiotic resistance proteins in A. hydrophila upon ENX stress and thereby reduce the pressure by preventing the activation of SOS repair system. Moreover, ahslyA directly or indirectly induced at least 11 TRs, which indicates a complicated regulatory network under ENX stress. We also deleted six selected genes in A. hydrophila that altered in proteomics data in order to evaluate their roles in ENX stress. Our results showed that genes such as AHA_0655 , narQ , AHA_3721 , AHA_2114 , and AHA_1239 are regulated by ahslyA and may be involved in ENX resistance. Overall, our data demonstrated the important role of ahslyA in ENX resistance and provided novel insights into the effects of transcriptional regulation on antibiotic resistance in bacteria.
科研通智能强力驱动
Strongly Powered by AbleSci AI