A Machine Learning-Based Multi-feature Extraction Method for Leather Defect Classification

人工智能 模式识别(心理学) 支持向量机 随机森林 特征提取 线性判别分析 计算机科学 直方图 分类器(UML) 人工神经网络 感知器 图像(数学)
作者
Malathy Jawahar,L. Jani Anbarasi,S. Graceline Jasmine,Modigari Narendra,R. Venba,V Karthik
出处
期刊:Lecture notes in networks and systems 卷期号:: 189-202 被引量:6
标识
DOI:10.1007/978-981-33-4305-4_15
摘要

Automatic inspection for detecting defects in leather is an inevitable task for grading the leather. Researchers from different parts of the globe have developed many leather defect classification models to address the problems of manual inspection. Discriminating defective and non-defective patterns in the leather substrate are challenging due to the inherent texture variations. Performance of the feature extraction and classifier plays a vital role in the recognition of the relevant patterns. Histogram of oriented gradients (HOG) and grey-level co-occurrence matrix (GLCM) along with Hu moments and HSV are implemented to extract the features from the leather images. The pivotal process is the extraction of these local and global features from the leather images. To detect and classify various leather defect types efficiently, a multi-feature algorithm that combines GLCM and Hog features is also investigated. Leather defect classification is performed using linear regression (LR), linear discriminant analysis (LDA), K-nearest neighbour (kNN), classification and regression tree (CART), random forest (RF), support vector machine (SVM) and multi-layer perceptron neural network (MLP). Experimental results show that the highest classification accuracy (89.75%) is achieved using GLCM along with Hu moments, HSV colour features and random forest classifier.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
linkman发布了新的文献求助10
3秒前
3秒前
4秒前
wanci应助wjw采纳,获得10
5秒前
6秒前
6秒前
orixero应助怡春院李老鸨采纳,获得10
6秒前
Lucas应助liuyc采纳,获得10
8秒前
甜美冰旋发布了新的文献求助10
8秒前
沈DJ完成签到,获得积分10
9秒前
Xieyusen发布了新的文献求助10
9秒前
10秒前
10秒前
nana完成签到,获得积分20
10秒前
小二郎应助轻松的忆彤采纳,获得10
13秒前
淡淡智宸发布了新的文献求助10
15秒前
vision0000发布了新的文献求助10
16秒前
彭于晏应助余111采纳,获得10
16秒前
18秒前
19秒前
19秒前
沈DJ发布了新的文献求助10
19秒前
ding应助liuyc采纳,获得10
21秒前
DD发布了新的文献求助30
22秒前
完美世界应助小甑采纳,获得20
22秒前
22秒前
hhh完成签到,获得积分10
24秒前
tang完成签到,获得积分10
24秒前
jxz发布了新的文献求助50
25秒前
酷炫大白发布了新的文献求助10
25秒前
bkagyin应助mkmimii采纳,获得10
27秒前
彬彬发布了新的文献求助10
27秒前
31秒前
冷静无心完成签到,获得积分10
32秒前
32秒前
Orange应助liuyc采纳,获得10
33秒前
33秒前
科研通AI2S应助Felix采纳,获得10
35秒前
SYLH应助Xiaoguangguang采纳,获得10
35秒前
小甑发布了新的文献求助20
35秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967419
求助须知:如何正确求助?哪些是违规求助? 3512730
关于积分的说明 11164792
捐赠科研通 3247704
什么是DOI,文献DOI怎么找? 1793978
邀请新用户注册赠送积分活动 874785
科研通“疑难数据库(出版商)”最低求助积分说明 804517