A novel nomogram for early prediction of death in severe neurological disease patients with electroencephalographic periodic discharges.

医学 脑电图 列线图 接收机工作特性 内科学 定量脑电图
作者
Feng Li,Lihong Huang,Yin Yan,Xuefeng Wang,Yida Hu
出处
期刊:Clinical Neurophysiology [Elsevier]
卷期号:132 (6): 1304-1311
标识
DOI:10.1016/j.clinph.2021.03.002
摘要

Abstract Objective To investigate death-related factors in patients with electroencephalographic (EEG) periodic discharges (PDs) and to construct a model for death prediction. Methods This case-control study enrolled a total of 80 severe neurological disease patients with EEG PDs within 72 h of admission to the neuroscience intensive care unit (NICU). According to modified Rankin scale (mRS) scores half a year after discharge, patients were divided into a survival group ( Results Multivariate logistic regression analysis showed that the involvement of both gray and white matter in imaging, disappearance of EEG reactivity, occurrence of stimulus-induced rhythmic, periodic, or ictal discharges (SIRPIDs), and an interval time of 0.5–4 s were independent risk factors for death. A regression model was established according to the multivariate logistic regression analysis, and the area under the curve of this model was 0.9135. The accuracy of the model was 87.01%, the sensitivity was 87.17%, and the specificity was 89.17%. A nomogram model was constructed, and a concordance index of 0.914 was obtained after internal validation. Conclusion The regression model based on risk factors has high accuracy in predicting the risk of death of patients with EEG PDs. Significance This model can help clinicians in the early assessment of the prognosis of severe neurological disease patients with EEG PDs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
叮叮当当完成签到,获得积分10
刚刚
刚刚
蜘蛛侦探完成签到,获得积分10
刚刚
刚刚
刚刚
biye6完成签到,获得积分10
刚刚
浅唱发布了新的文献求助10
1秒前
hfhfj发布了新的文献求助10
1秒前
猫与咖啡完成签到,获得积分10
1秒前
jerry完成签到,获得积分10
2秒前
2秒前
周小鱼发布了新的文献求助10
2秒前
小寒0812完成签到,获得积分10
2秒前
李哈哈发布了新的文献求助10
3秒前
平安喜乐完成签到,获得积分10
3秒前
思源应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
yar应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
思源应助科研通管家采纳,获得30
4秒前
杂货店的铺老板完成签到 ,获得积分10
4秒前
眉梢发布了新的文献求助30
5秒前
hhhhmmmn完成签到,获得积分10
5秒前
呆呆完成签到,获得积分10
6秒前
way完成签到,获得积分10
6秒前
ljx完成签到 ,获得积分10
6秒前
zzz完成签到,获得积分10
6秒前
暴躁的元霜完成签到,获得积分10
6秒前
剧透了啊啊完成签到,获得积分10
6秒前
nwpuwangbo完成签到,获得积分10
6秒前
浅唱完成签到,获得积分10
6秒前
应俊完成签到 ,获得积分10
6秒前
wl完成签到,获得积分10
7秒前
brd完成签到,获得积分10
7秒前
7秒前
hongt05完成签到 ,获得积分10
7秒前
mol完成签到,获得积分10
8秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3450630
求助须知:如何正确求助?哪些是违规求助? 3046125
关于积分的说明 9004768
捐赠科研通 2734794
什么是DOI,文献DOI怎么找? 1500136
科研通“疑难数据库(出版商)”最低求助积分说明 693385
邀请新用户注册赠送积分活动 691542